The evolution of spin polarization in jets traversing the glasma

Siggi Hauksson IPhT, Saclay

Strong and Electroweak Matter June 21st 2022

In collaboration with E. lancu.

313 990

Early stages of heavy-ion collisions

SEWM 2022

- Heavy-ion collisions produce high-temperature QCD matter.
- Bulk of evolution described my hydrodynamics.
- Want to understand early-time evolution before hydro.
- Characterized by highly occupied gluonic fields (glasma).
 [See e.g. Berges, Heller, Mazeliauskas, Venugopalan (2020)]
- Want experimental probes of the glasma, e.g. jets.

Siggi Hauksson

[Shen (2014)]

Jets in medium

SEWM 2022

 Transverse momentum broadening of a jet parton in medium:

$$\widehat{q} = \frac{d\langle \mathbf{p}_{\perp}^2 \rangle}{dt}$$

• Allows for medium-induced gluon emission:

$$\Gamma \sim \frac{g^2 \sqrt{\hat{q}}}{\sqrt{E}}$$

[See e.g. Qin, Wang (2015)]

- Wavepackets of partons overlap for a long time during emission.
 [Landau, Pomeranchuk (1953); Migdal (1955)]
- This process determines whole jet structure. [For vacuum-like emission see e.g. Majumder (2018); Wang, Guo (2001)]

Siggi Hauksson

Jet broadening in glasma

- Jet partons traverse heavily occupied gluon fields.
- Deflected by chromomagnetic and chromoelectric forces.
- As much broadening as during hydro stage!
 - $\Delta p_{\perp}^2 |_{\rm glasma} / \Delta p_{\perp}^2 |_{\rm hydro} \approx 0.9$ [Carrington, Czajka, Mrowczynski (2022)]

Jet broadening in glasma

• Broadening can be anisotropic:

•
$$\widehat{q}_z \neq \widehat{q}_y$$
 with $\widehat{q}_y = rac{d\langle p_y^2 \rangle}{dt}$

• In glasma broadening is heavily anisotropic,

[Carrington, Czajka, Mrowczynski (2022)]

[Ipp, Muller, Schuh (2020)]

 $\widehat{q}_z \approx 2\widehat{q}_y$

This talk

- How do jets evolve in glasma?
- How important is the glasma stage?
- How does anisotropy in broadening affect jet evolution?
 - Leads to polarization in gluon helicity.
 - The degree of polarization is constant for all energy scales in jet.

Single gluon emission in an anisotropic medium

- Evaluate rate using BDMPS-Z formalism.
 [E.g. Baier, Dokshitzer, Peigné, Schiff, Mueller (1996); Zakharov (1997)]
 - In path integral $\widehat{q} \mathbf{r}^2 \longrightarrow \widehat{q}_y r_y^2 + \widehat{q}_z r_z^2$.
- Total unpolarized rate is nearly unaffected by anisotropy (z = E_b/E_a; \$\hat{q} = \hat{q}_x + \hat{q}_y\$)

$$\frac{d\mathcal{P}}{dzdt} = \frac{\alpha_s}{2\pi} P_g \to g(z) \frac{\sqrt{1-z(1-z)}}{\sqrt{z(1-z)E_a}} (4\widehat{q}_x \widehat{q}_y)^{1/4} \\ \times \frac{1}{2} \left[f\left(\sqrt{\frac{\widehat{q}_x}{\widehat{q}_y}}\right) + f\left(\sqrt{\frac{\widehat{q}_y}{\widehat{q}_x}}\right) \right] \\ f(\sqrt{a}) = \int_{-\infty}^{\infty} \left[\frac{1}{a^{1/4} a^2} - \frac{1}{\sinh^{1/2} (\widehat{q}_x \sinh^{3/2} a)} \right]$$

• Plot $(d\mathcal{P})_{aniso}/(d\mathcal{P})_{iso}$ at fixed \hat{q} with $\xi = \frac{\hat{q}_z - \hat{q}_y}{\hat{q}_z + \hat{q}_y}$

Siggi Hauksson

June 21st 2022

7/14

Polarized emission in anisotropic medium

- Daughter parton has net polarization:
 - Opening angle θ preferably in z direction.
 - Daughter partons are preferably polarized in plane of θ .
- Want to calculate e.g. $\frac{d\mathcal{P}_{y \to y}}{dzdt}$
- Ingredients:
 - Know polarized splitting functions given branching plane.
 - Integrate over all orientations of branching plane, weigted by medium physics.

Single gluon emission in an anisotropic medium

- Ensemble of gluons: Probability p of polarization in beam direction.
- Daughter parton has $(z = E_b/E_a)$

$$p' - \frac{1}{2} = f(z) \left(p - \frac{1}{2} \right) + g(z) G(\hat{q}_z / \hat{q}_y)$$

$$f(z) = \frac{z^2}{(1-z)^2 + z^2 + z^2(1-z)^2}, \quad g(z) = \frac{(1-z)^2}{(1-z)^2 + z^2(1-z)^2 + z^2}$$

- Isotropic medium: Polarization reduced at each splitting.
- Anisotropic: Unpolarized mother radiates polarized daughter!
- Two competing effects.

Single gluon emission in an anisotropic medium

Two intuitive limits:

•
$$z \to 0$$
 :
 $p' - \frac{1}{2} = z^2 (p - \frac{1}{2}) + G(\hat{q}_z/\hat{q}_y)$
• $z \to 1$:
 $p' - \frac{1}{2} = (p - \frac{1}{2}) + (1 - z)^2 G(\hat{q}_z/\hat{q}_y)$

• Size of polarization given by $G(\widehat{q}_z/\widehat{q}_y)$.

$$G(\hat{q}_z/\hat{q}_y) = \frac{f\left(\sqrt{\hat{q}_y/\hat{q}_z}\right) - f\left(\sqrt{\hat{q}_z/\hat{q}_y}\right)}{f\left(\sqrt{\hat{q}_y/\hat{q}_z}\right) + f\left(\sqrt{\hat{q}_z/\hat{q}_y}\right)}; \quad \xi = \frac{\hat{q}_z - \hat{q}_y}{\hat{q}_z - \hat{q}_y}$$

- For glasma $G\sim 0.08-0.15$
- Expected branching is democratic $(z \sim \frac{1}{2})$.
 - Not clear which wins out in the end.
 - Need evolution of jet as a whole

June 21st 2022

Evolution of polarization

• Consider total evolution of jet in glasma brick with constant $G(\hat{q}_z/\hat{q}_y).$ • $\tau=\frac{\alpha_s N_c}{\pi}\sqrt{\frac{\hat{q}}{E}}t$

$$\begin{split} \frac{dD_{\text{tot}}(x,\tau)}{d\tau} &= \int_x^1 dz \; \mathcal{K}_0(z) \sqrt{\frac{z}{x}} \; D_{\text{tot}}\left(\frac{x}{z},\tau\right) - \int_0^1 dz \; \mathcal{K}_0(z) \; \frac{z}{\sqrt{x}} \; D_{\text{tot}}(x,\tau) \\ \frac{d\tilde{D}(x,\tau)}{d\tau} &= \int_x^1 dz \; \mathcal{M}_0(z) \; \sqrt{\frac{z}{x}} \; \tilde{D}\left(\frac{x}{z},\tau\right) - \int_0^1 dz \; \mathcal{K}_0(z) \; \frac{z}{\sqrt{x}} \; \tilde{D}(x,\tau) \\ &+ \int_x^1 dz \; \mathcal{L}_0(z) \; \sqrt{\frac{z}{x}} \; D_{\text{tot}}\left(\frac{x}{z},\tau\right). \end{split}$$

$$\mathcal{K}_{0}(z) \approx \frac{1}{z^{3/2}(1-z)^{3/2}}, \qquad \qquad \mathcal{M}_{0}(z) \approx z^{2}\mathcal{K}_{0}(z), \qquad \qquad \mathcal{L}_{0}(z) \approx G(\hat{q}_{z}/\hat{q}_{y})(1-z)^{2}\mathcal{K}_{0}(z)$$

• $D_{\text{tot}} = x \frac{d(N_z + N_y)}{dx}$ is energy spectrum, $\widetilde{D} = x \frac{d(N_z - N_y)}{dx}$ is polarization. [Equation for D_{tot} : Blaizot, lancu, Mehtar-Tani (2013); Blaizot, Mehtar-Tani (2015); Fister, lancu (2014); lancu, Wu (2015); Escobedo, lancu (2016). See also Mehtar-Tani Schlichting (2018)]

Siggi Hauksson

June 21st 2022

Evolution of polarization

- Can solve exactly for helicity spectrum at $x \ll 1$:
 - Use method of Green's functions [Fister, Iancu (2014)].

$$\widetilde{D} = \frac{1}{3}G(\widehat{q}_z/\widehat{q}_y)\frac{\tau e^{-\pi\tau^2}}{\sqrt{x}}$$

• Constant fraction of particles with helicity polarization at all x!

$$\widetilde{D}/D_{\text{tot}} = \frac{1}{3}G(\widehat{q}_z/\widehat{q}_y) \sim 0.05.$$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Measurements

- Our estimates suggest that after glasma stage, constant $\sim 5\,\%$ polarization of gluons.
 - Larger than $\sim 2\,\%$ polarization of Λ hyperons at RHIC.
- Hydro phase reduces polarization:
 - Eventually,

$$\widetilde{D} \sim G(\widehat{q}_z/\widehat{q}_y) x^{3/2} \frac{e^{-\pi(\tau-\tau_c)^2}}{(\tau-\tau_c)^2}$$

• What happens at hadronization?

C		
	Hauksson	

Conclusions

- Early glasma stage important for jets in heavy-ion collisions.
- Anisotropy in momentum broadening leads to $\sim 5\,\%$ gluon polarization.
- Calculated rate of polarized gluon emission and solved evol. eqs.
 - Polarization constant at all energy scales.
- Need to study fate of polarization in experiments further.

SEWM 2022

Polarized emission in anisotropic medium

- Is BDMPS-Z justified in this context?
 - Formation time $\sqrt{\frac{\omega}{\widehat{q}}} \gg 1/Q_s$ gives $\omega \gg g^2 Q_s$ for $\widehat{q} \sim g^2 Q_s^3$.
 - Ignore any net drift, i.e. assume $\langle \mathbf{p}_{\perp} \rangle = 0$.
- Rate given by

$$\frac{dP_{i\to jk}}{dzdt} \sim \operatorname{Re} \int_0^\infty d\Delta t \int_{\mathbf{P_1},\mathbf{P_2}} \Gamma^{ijk}(\mathbf{P_1},z) \Gamma^{ijk}(\mathbf{P_2},z) \,\tilde{S}^{(3)}(\Delta t,\mathbf{P_1},\mathbf{P_2}).$$

where

$$\begin{split} \tilde{S}^{(3)}(\Delta t, \mathbf{P}_1, \mathbf{P}_2) &= \frac{2\pi (1+i)}{k_x k_y \sqrt{\sinh \Omega_x \Delta t} \sqrt{\sinh \Omega_y \Delta t}} \\ &\times \exp\left[-\frac{(1+i)}{4k_x^2 \tanh \frac{\Omega_x \Delta t}{2}} \left(P_{1\,x} - P_{2\,x}\right)^2 - \frac{(1+i)}{4k_x^2 \coth \frac{\Omega_x \Delta t}{2}} \left(P_{1\,x} + P_{2\,x}\right)^2\right] \\ &\times \exp\left[(x \leftrightarrow y)\right] \end{split}$$

• E.g.
$$\Gamma^{y \to yy}(\mathbf{P}_1, z) \sim \widehat{P}_{1y} \frac{1-z(1-z)}{z(1-z)}$$

June 21st 2022

What happens in hydro phase?

- Hydrodynamic phase more isotropic.
 - Hydro:

$$\widehat{q}\sim g^4T^3\int d^2p_\perp p_\perp^2 \left(\frac{1}{p_\perp^2}\right)^2\sim g^4\Lambda^3\log E/m_D$$
 [Hauksson, Jeon, Gale (2021)]

- Glasma: Saturation scale is the cutoff. $\widehat{q} \sim q^2 Q_a^3 + q^4 Q_a^3 \log E/Q_s$
- Hydro phase reduces polarization:
 - If switch to isotropic at time τ_c , start to see decay at $\tau \tau_c \sim \sqrt{x}$.
 - Eventually,

$$\widetilde{D} \sim G(\widehat{q}_z/\widehat{q}_y) x^{3/2} \frac{e^{-\pi(\tau-\tau_c)^2}}{(\tau-\tau_c)^2}$$

SEWM 2022

Measurements?

- Our estimates suggest that after glasma stage, constant $\sim 5\,\%$ polarization of gluons.
 - Bigger than $\sim 2\,\%$ polarization of Λ hyperons at RHIC.

- Hydro phase reduces polarization. [Voloshin (2017)]
- What happens at hadronization? [See e.g. Kerbizi, Artru, Belghobsi, Martin (2019); Kerbizi, Lönnblad (2020)]
- Measurements of polarization difficult.
- Other ways: Photon emitted by quarks in jets?

Siggi Hauksson

Formalism for jet splitting

• Isotropic case has been analyzed widely: [E.g. Baier, Dokshitzer, Peigné, Schiff, Mueller (1996); Zakharov (1997)

Arnold, Moore, Yaffe (2002); Hauksson, Jeon, Gale (2018)]

Rate of branching is

$$\frac{d\Gamma_{z \to z}}{dz} \sim \alpha_s \operatorname{Re} \int d^2 h \, \mathbf{h} \cdot \mathbf{F}(\mathbf{h}) \Bigg[\cos^4 \phi \, \mathcal{F}_{\operatorname{in} \to \operatorname{in}, \operatorname{in}}(z) + \sin^4 \phi \, \mathcal{F}_{\operatorname{out} \to \operatorname{out}, \operatorname{in}}(z) + \cdots \Bigg]$$

• Here

$$\mathbf{h} = ih^{2}\mathbf{F}(\mathbf{h}) - \left(\widehat{q}_{z} \partial_{h_{z}}^{2} + \widehat{q}_{y} \partial_{h_{y}}^{2}\right) \mathbf{F}(\mathbf{h})$$

$$E_{a} \underbrace{\bigcirc}_{E_{a}} \underbrace{\bigcirc}_{E_{a}} \underbrace{\frown}_{E_{a}} \underbrace{$$

• Solve by expanding in $\frac{\widehat{q}_z - \widehat{q}_y}{\widehat{q}_z + \widehat{q}_y}$. Gives details of radiation pattern.

• Join with polarized splitting functions $\mathcal{F}(z)$, $z = E_b/E_a$.

~ .			
Sig	σι	- 211	ikeeon.
568	Б''	lau	11/22/011

Jets in an isotropic plasma

 Broadening brings parton off shell so it can radiate.

[See e.g. review: Qin, Wang (2015)]

- Wavepackets overlap for a long time (LPM). [Landau, Pomeranchuk (1953); Migdal (1955)]
- Schematic estimate:
 - $\theta \sim \frac{p_{\perp}}{F} \sim \frac{\Delta x_{\perp}}{\tau}$
 - Uncertainty principle: $p_{\perp}\Delta x_{\perp} \sim 1$ so $\tau \sim \frac{E}{p_{\perp}^2} \sim \frac{E}{\widehat{q}\tau}$

• Get rate
$$\Gamma \sim \alpha_s P(z)/\tau \sim \alpha_s \, P(z) \, \frac{\sqrt{\hat{q}}}{\sqrt{E}}$$

• $P_{\text{hard}}(z) = \frac{1+z^4+(1-z)^4}{z(1-z)}$ is splitting function; $z = E_b/E_a$.

Siggi Hauksson

・ロト ・ 同 ・ ・ ミト ・ 三 ト ・ 「 同 ト ・ ロ ト June 21st 2022