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Introduction
©000

Transverse momentum broadening in QCD

@ Physical system: a highly energetic parton propagating through a dense QCD medium.

@ We compute the tranverse momentum distribution P(k, ) of the outgoing parton.

E>>k’L E k|

Y

Compute the large L limit of the transverse momentum broadening distribution P (k)
including leading radiative corrections.
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Introduction
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Why is TMB interesting?

@ "Hot QCD”: Dijet azimuthal angular distributions in heavy-ion collisions: access to the
TMB and the medium properties.

@ Ex: studies by &

Dijet Angular Correlation at RHIC
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@ "Cold QCD": fast probe of gluon distribution in large nuclei L o< AY/3 > 1 at small-x.
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Introduction
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TMB at "tree level”

@ Forward scattering amplitude of an effective dipole with size x|,

S(x1) = Ni<TrVT(xl)V(0J_)> 5 with  V(x.) = Pe® ! DA x)

[
. Th

P

@ ([...]) denotes average of the medium background field.

See talk by P. Schicho for NP

! determination of the collision kernel

@ Assuming independent multiple interactions, collision kernel
—~ =

(A7 kAT (v K)o g2n(x )68 (x ™ — yT)a(k — K ) x /K%
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Introduction
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TMB at "tree level” and saturation scale Qs(L)

= LO g given by 6(0)(1/xi) =§oln ﬁ [~ mp
T
= Fourier transform of the dipole S-matrix

'P(O)(kj_) _ /dlee—ikin e—%@(l/xi)in

tree level

10!
) Qs emergent momentum scale TH
>

9 10!

@ Transition between the unitarity bound S ~ 1 E — e KH/Q2(L)

and the dilute regime S < 1. &
=~
e

=3L
10 Go =0.5GeV2/fm, L = 6 fm 1
X
4

@ At tree-level,
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TMB in DLA
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TMB at one loop in a dense QCD medium

@ Computation at one-loop in as(p7r) < 1, but to all-orders in asn.

&

0,

I

I

P

@ Typical order of magnitude of the NLO correction to §:

@ Double log enhancement: Q?(L) = GoL (1 + % In?(L/70) + ...) at NLO.

(L 1/x7) ~

asN

/dT /1/& a/k’2 a
(")

See also talk by E. Weitz
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TMB in DLA
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Double logarithmic phase space

@ Phase space in terms of k; and 7 of the gluon.

@ Unlike DGLAP or BFKL double log, non-linear
saturation bound: Q2(7) ~ Gor.

@ Constrains the emission to be triggered by a single
scattering.

See also talk by E. Weitz

QXL T
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TMB in DLA
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Resummation of the leading radiative corrections

@ Resummation to all orders via the evolution equation

04(r, k> K gk .
NI _ [ S8 ) ot k)

2(r) kT
with Q2(7) = §(7, Q2(7))7.

@ Exponentiation of the double logarithmic corrections.

P(kj_):/dz)(J_e ikix1 exp [—4( © + g™ 4 . ) Lxﬁ_]
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Extended geometric scaling and Levy flights
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Asymptotic limit of TMB at fixed coupling

o Large system size limit of (L, k)

2
281In( 2+ )
4L, k)L 2(aw) if k1 < QX(L)

QL) 1o gm@%J[

L c—1
GORTAES
7o
Here 8 = (c —1)/(2¢) and ¢ = 1 + 2\/as + a2 + 2as.

with

— extended geometric scaling k3 < Q*/.2.

@ Similar to geometric scaling for gluon distribution at small x: In(1/x) > In(L/70).
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Extended geometric scaling and Levy flights
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Lévy flights

@ At large time L > 79, near the peak

S(xu.L) ~ exp (—%uxuosu))*“ﬁ) . BeVE

@ — the TMB distribution satisfies a fractional Fokker-Planck equation

y=2-48

OP(L ki) _ O"P(L ky)
oL U oku

Brownian motion Levy flight

@ Equation for the prob. density of a Lévy walker, e.g.
o v=—puv+n(t)

e 7)7(t) Lévy stable noise (y = 2 is the standard white Gaussian noise).
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Extended geometric scaling and Levy flights

lele] lo}

Superdiffusion in momentum space

R L c—1
° QA1) =doL (L)
@ The median of the distribution scales like

M ~ L1/2+\/i

@ = super-diffusive behaviour. NLO
corrections yields super-diffusion in
momentum space.

a1
(=]

N
(=}
T

Qa1
T

median k1 [GeV]
S

: :
[ — treelevel
— resummed - numeric

== resummed -

analytic

r s = 02, 4o = 0.1 GeV3, 1y = 0.34 fm
2 5 10 20 50
L [fm]

100
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Extended geometric scaling and Levy flights
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Heavy-tailed distribution

0 §~ PIkKL/Q) at large k.

@ Fourier transform of the "stretched”
exponential exp(—[...]x7 ) with
N2 42 /Es > 2

@ Heavy tailed distribution

1

T

101

100_

xP(x)

10—2_

1073_

Broadening distribution - scaling property

10—1_

\.

— scaling limit
--- Levy distrib. 28
—- heavy-tail

101 100 10! 102
x=kr/Qs
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Sub-asymptotic behaviour: traveling waves
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Beyond the asymptotic limit

@ We have determined the limit L — oo of the TMB distribution.

@ What about the sub-asymptotic corrections?

@ Are they universal = independent of the initial conditions?

@ Can they be used down to realistic values of L?
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Sub-asymptotic behaviour: traveling waves
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Wave front propagation into unstable state

@ We borrow techniques from front propagation
into unstable sate.

@ Similar to the traveling wave interpretation of
the solutions to BK.

@ Typical example reaction-diffusion process:
Fisher-Kolmogoroff-Petrovsky-Piscounoff eq.

0ep = 030 + & —
@ Universality of the wave-front velocity ps:

ps = C+ corrections

front interior
1.251 o~ ps(Y) ~ oY

i leading edg
- 0.50 H— eading edge
p—ps(Y) ~Y*

-0 0 10 20 30 40 50
P
"At late time, the universal properties of the
front are determined by the linearized dynamics
of arbitrarily small perturbations about the
unstable state.”
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Sub-asymptotic behaviour: traveling waves
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Leading edge expansion

@ Diffusive deviation from the asymptotic limit, with we consider.
~ A _ X
q(Y,p) = qoeps(y) Yeﬁx{ YG (W) + :|
ps(Y) = c+dps(Y)
@ Diffusion power characteristics of the universality class of the evolution equation.

@ Homogeneity conditions fix the power «.

@ a = 1/2 for fixed coupling, @ = 1/6 for running coupling

14/19



Sub-asymptotic behaviour: traveling waves
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Results for fixed coupling

@ For fixed coupling, we find the pre-asymptotic behaviour

m exp 3X_m) [1+3x 1+C) (1+B(c+4))+0(%)} if x>0

(1)
with ( )
3c 6cy/2m(c—1) 1
ps(Y) CY_(]_+C) ln(Y)_WW—FO( )

@ x=In(k%/Q3(L)), Y = In(L/70).
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Sub-asymptotic behaviour: traveling waves

0000e00
Some plots
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@ Sub-asymptotic corrections enable one to have a good agreement with the numeric.

@ Analytic results can be systematically improved.
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Sub-asymptotic behaviour: traveling waves
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Running coupling and single logarithmic corrections in the L — oo limit

@ The single log corrections have been computed first by Liou, Mueller, Wu

a L 1 L
(L, Q%) =do |1+ = In* ([ — ) +as(2In(2) —ve — > | In | — ) + O(as
(L @) = o 1+ G107 () ac(2002) e - 3 )0 () + Ofa)]
@ The asymptotic limit is not sensitive to the details of the non-linearities.

@ To single log accuracy, contributions from NLL BFKL kernel ~ Bg/’yz:

~ P P o
% :/ dp’as(p’)é(Y,p’)eriBg/ dp// dp"4(Y,p")

s

® B, = —11/12 — ng/(6N2) finite part of the DGLAP gluon splitting function (from
BKFL-DGLAP duality)
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Sub-asymptotic behaviour: traveling waves
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Running coupling and single logarithmic corrections in the L — oo limit

@ Final result, exact to all orders in pQCD (but for Y = In(L/7) — o0...)
@ All universal terms in the asymptotic expansion of Q2(L)

dIn(Q2(L)) 4by 2¢1 by ST
_1 1 — 8bo+4byBy) — — TEVTe
dinL T @by )2 T @by yys T (T8 TANE) 5y = 75 by vy
Gby 1 > In(Y) L
— (5+1944bg) == ———— — by (2 — 16bp+8hyB;) ———5 + O [ o5
( + bO) 81 (4boY)4/3 0( o-+3Dbo g) (4boY)3/2 + Y3/2
@ In agreement with for the linearized equation.
33 - double log, O(Y~1)
3.0 -~ singlelog, O(Y1)
25 — double log, O(Y3/2In(Y))
— single log, O(Y~*/2In(Y))
d‘.‘>2.0
T
1.0 7
05
0.0 ’
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Conclusion
°

Summary

@ Study of the effect of radiative corrections on transverse momentum broadening in a
dense QCD medium for large system sizes.

@ TMB satisfies extended geometric scaling.

@ Radiative corrections yield super-diffusive behaviour in momentum space, and a heavy tail
with power index smaller than the typical Rutherford behaviour.

@ The DLA non-linear evolution equations share similar mathematical properties as
equations for wave front propagation into unstable states.

@ Enable to compute the universal behaviour of the TMB distribution, valid down to
realistic values of the system size.

19/19



	Introduction
	TMB in DLA
	Extended geometric scaling and Levy flights
	Sub-asymptotic behaviour: traveling waves
	Conclusion

