Absence of inhomogeneous phases in 2 + 1-dimensional Four-fermion models

Marc Winstel

in collaboration with Laurin Pannullo and Marc Wagner

Strong and Electro-Weak Matter 2022, Paris

June 21, 2022

Introduction

- Simple strong-interaction models feature so-called inhomogeneous, chiral phase
- Chiral condensate breaks translational invariance spontaneously $\langle \bar{\psi}\psi \rangle = f({f x})$
- Indications for such phases and related phenomena found in QCD¹

1 + 1-dimensional Gross-Neveu model in the mean-field approximation²³

¹W.-j. Fu, J. M. Pawlowski, F. Rennecke, *Phys. Rev. D* 2020, *101*, 054032.
 ²M. Thies, K. Urlichs, *Phys. Rev. D* 2003, *67*, 125015.
 ³A. Koenigstein et al., 2021.

- In mean-field models inhomogeneous phases are:
 - Established in 1 + 1 dimensions
 - Also found in 3 + 1 dimensions⁴, but the results are questionable . . .
 - In the renormalizable Quark-Meson model the action gets unbounded when renormalizing⁵
 - $\bullet\,$ In non-renormalizable NJL model the results depend on the regularizations scheme \Rightarrow see Laurin Pannullos talk today
- In 2 + 1 dimensions we refer to Refs.⁶⁷⁸
- ▶ In short: Inhomogeneous phases are found at finite regulator values depending on regularization scheme, but vanish when $\Lambda \to \infty$

- ⁶M. Buballa, L. Kurth, M. Wagner, M. Winstel, *Phys. Rev. D* 2021, 103, 034503.
- ⁷R. Narayanan, *Phys. Rev. D* **2020**, *101*, 096001.

⁸L. Pannullo, M. Wagner, M. Winstel, *Symmetry* **2022**, *14*, 265.

⁴M. Buballa, S. Carignano, *Prog. Part. Nucl. Phys.* **2015**, *81*, 39–96.

⁵S. Carignano, M. Buballa, B.-J. Schaefer, *Phys. Rev. D* **2014**, *90*, 014033.

Studied 2 + 1-dim. Gross-Neveu model, which is a Four-fermion model with scalar $(\bar{\psi}\psi)^2$ channel

 \Rightarrow Can this result be transferred to more involved models in 2+1 dimensions?

A more general Four-fermion model?

CRC-TR 211

- ▶ In principle, stability analysis applies to every kind of interaction-channel
- 4×4 Dirac Algebra allows for 16 possible bilinears, i.e.

 $\{\gamma_A\}_{A=1,\dots,16} = \{\mathbb{1}, i\gamma_4, i\gamma_5, \gamma_{45} \equiv i\gamma_4\gamma_5, \gamma_\mu, \frac{i}{2}[\gamma_\mu, \gamma_\nu], i\gamma_\mu\gamma_4, i\gamma_\mu\gamma_5, \}$

Vector interactions do not exhibit chiral condensation in the mean-field approximation⁹
 Inhomogeneous chiral phases are not expected

⁹G. Parisi, Nucl. Phys. B **1975**, 100, 368–388.

A more general Four-fermion model?

- ► In principle, stability analysis applies to every kind of interaction-channel
- 4×4 Dirac Algebra allows for 16 possible bilinears, i.e.

 $\{\gamma_A\}_{A=1,\dots,16} = \{\mathbb{1}, i\gamma_4, i\gamma_5, \gamma_{45} \equiv i\gamma_4\gamma_5, \gamma_\mu, \frac{i}{2}[\gamma_\mu, \gamma_\nu], i\gamma_\mu\gamma_4, i\gamma_\mu\gamma_5, \}$

- Vector interactions do not exhibit chiral condensation in the mean-field approximation⁹
 Inhomogeneous chiral phases are not expected
- Focus lies on $\{1, i\gamma_4, i\gamma_5, \gamma_{45}\}$ but allow combinations with isovector $\vec{\tau} = (\tau_1, \tau_2, \tau_3)$

 $\{\gamma_B\}_{B=1,\dots,16} = \{1, i\gamma_4, i\gamma_5, \gamma_{45}, \vec{\tau}, i\vec{\tau}\gamma_4, i\vec{\tau}\gamma_5, \vec{\tau}\gamma_{45}\}$

⁹G. Parisi, *Nucl. Phys. B* **1975**, *100*, 368–388.

A more general Four-fermion model?

- ► In principle, stability analysis applies to every kind of interaction-channel
- 4×4 Dirac Algebra allows for 16 possible bilinears, i.e.

 $\{\gamma_A\}_{A=1,\dots,16} = \{\mathbb{1}, i\gamma_4, i\gamma_5, \gamma_{45} \equiv i\gamma_4\gamma_5, \gamma_\mu, \frac{i}{2}[\gamma_\mu, \gamma_\nu], i\gamma_\mu\gamma_4, i\gamma_\mu\gamma_5, \}$

- Vector interactions do not exhibit chiral condensation in the mean-field approximation⁹
 Inhomogeneous chiral phases are not expected
- Focus lies on $\{1, i\gamma_4, i\gamma_5, \gamma_{45}\}$ but allow combinations with isovector $\vec{\tau} = (\tau_1, \tau_2, \tau_3)$

$$\{\gamma_B\}_{B=1,\dots,16} = \{\mathbb{1}, i\gamma_4, i\gamma_5, \gamma_{45}, \vec{\tau}, i\vec{\tau}\gamma_4, i\vec{\tau}\gamma_5, \vec{\tau}\gamma_{45}\}$$

All kind of chemical potentials can be included, i.e. μ_B, μ₄₅, μ₅, μ₄ with corresponding structures in Dirac space, but also isospin potential μ_I

⁹G. Parisi, Nucl. Phys. B **1975**, 100, 368–388.

Chiral/Isospin imbalance in the Gross-Neveu model

CRC-TR 211

- \blacktriangleright Stability analysis on the lattice of GN model with μ_{45} or μ_{I}
- Obtain instability region of $\sigma = \bar{\sigma}$ for one of two discretizations

 $a\sigma_0 = 0.2327, L\sigma_0 = 23.27$

A more general Four-Fermion model

Bosonization of Four-Fermion models leads to the action

$$S_{\rm FF}[\bar{\psi},\psi,\vec{\phi}] = \int d^3x \, \left(N_{\rm f} \, \frac{\vec{\phi}(\mathbf{x}) \cdot \vec{\phi}(\mathbf{x})}{2\lambda} \, + \, \bar{\psi}(x) \, Q \, \psi(x) \right)$$
$$Q = \partial \!\!\!/ + \gamma_0 \mu + M + \sum_j c_j \phi_j(\mathbf{x})$$

• Equivalent action after integrating fermions out

$$S_{\rm eff}[\vec{\phi}]/N_{\rm f} = \int {\rm d}^3x \;\; {\vec{\phi}({f x})\cdot \vec{\phi}({f x})\over 2\lambda} \;\; - \; {\rm Tr}\ln Q$$

• M contains all type of allowed mass terms, set M = 0 for chiral limit

$$\langle \phi_j \rangle \sim \langle \bar{\psi} c_j \psi \rangle$$

A more general Four-Fermion model

▶ Bosonization of Four-Fermion models leads to the action $c_j \in \{\gamma_B\}_{B=1,...,16}$

$$S_{\rm FF}[\bar{\psi},\psi,\vec{\phi}] = \int d^3x \left(N_{\rm f} \, \frac{\vec{\phi}(\mathbf{x}) \cdot \vec{\phi}(\mathbf{x})}{2\lambda} + \bar{\psi}(x) \, Q \, \psi(x) \right)$$
$$Q = \vec{\phi} + \gamma_0 \mu + M + \sum_j c_j \phi_j(\mathbf{x})$$

Equivalent action after integrating fermions out

$$S_{\rm eff}[\vec{\phi}]/N_{\rm f} = \int {\rm d}^3x \ \frac{\vec{\phi}(\mathbf{x}) \cdot \vec{\phi}(\mathbf{x})}{2\lambda} \ - \ {\rm Tr} \ln Q$$

• M contains all type of allowed mass terms, set M = 0 for chiral limit

$$\langle \phi_j \rangle \sim \langle \bar{\psi} c_j \psi \rangle$$

• Analyze the stability of the homogeneous ground state $\vec{\phi} = \vec{\phi}$

$$\phi_j = \bar{\phi}_j + \delta \phi_j(\mathbf{x})$$

- Mean-field approximation \Rightarrow Find homogeneous ground state via optimization
- Compute corrections to the action due to perturbation $\delta \phi_j(\mathbf{q})$
- Second order corrections determine whether action is lowered by the perturbation

$$S_{\text{eff}}[\sigma]/N_{\text{f}} = \frac{1}{2\lambda} \int d^3x \left(\bar{\sigma} + \delta\sigma(\mathbf{x})\right)^2 - \text{Tr}\left(\ln(\underbrace{\not \!\!\!\!/}_{\equiv \bar{Q}} + \gamma_0\mu + \bar{\sigma} + \delta\sigma(\mathbf{x}))\right)$$

► Expand $S_{\text{eff}}[\bar{\sigma} + \delta\sigma]$ in powers of $\delta\sigma$ yields $S_{\text{eff}}^{(2)}/N_{\text{f}} = \frac{\beta}{2\lambda} \int d^2x \left(\delta\sigma(\mathbf{x})\right)^2 + \frac{1}{2} \text{Tr}\left(\bar{\mathbf{Q}}^{-1}\delta\sigma\bar{\mathbf{Q}}^{-1}\delta\sigma\right)$

Evaluating traces and fourier transform gives

$$S_{\text{eff}}^{(2)}/N_{\text{f}} = \frac{1}{2}\beta \int \frac{d^2q}{(2\pi)^2} |\delta\tilde{\sigma}(\mathbf{q})|^2 \Gamma^{(2)}(\mathbf{q}^2)$$

$$\Gamma^{(2)}(\mathbf{q}^2) = \frac{1}{\lambda} - \ell_1 \underbrace{-\frac{1}{2}(\mathbf{q}^2 + 4\bar{\sigma}^2)\ell_2(\mathbf{q}^2)}_{L_2(\mathbf{q}^2)}$$

•
$$L_2(\mathbf{q}^2)$$
 is monotonically increasing $\forall \mu, T, \bar{\sigma}$

CRC-TR 211

Momentum dependence of $\Gamma^{(2)}$ - Explore $\mu, T, \bar{\sigma}$

Inhomogeneous phases in 2 + 1-dimensional Four-fermion models

Analyzing the two-point function for other models

The stability analysis can be applied to all Four-fermion channels

- $\Gamma_{\phi_i\phi_j}(\mathbf{q})$ gives fermionic contribution to curvature
- \Rightarrow Strategy: Identify $L_2(\mathbf{q})$, as found for the GN model, for more complex models
- Potential terms and standard kinetic terms will not change the monotonic behavior of $\Gamma^{(2)}$

$$S[\bar{\psi},\psi,\sigma] = \int \mathrm{d}^3x \left(\frac{1}{2g^2}\sigma^2 + \frac{1}{2}(\partial\sigma)^2 + \frac{\lambda}{4}\sigma^4 + \bar{\psi}_f\left(\gamma_\nu\partial_\nu + \gamma^0\mu + h\sigma\right)\psi_f\right)$$

By redefinitions of fields and couplings

$$\frac{S_{\mathsf{eff}}[\sigma]}{N_f} = \int \mathrm{d}^3 x \left(\frac{m_0^2}{2} \sigma^2 + \frac{\gamma}{2} (\partial_\nu \sigma) (\partial_\nu \sigma) + \frac{\kappa}{4} \sigma^4 \right) - \ln \left(\mathrm{Det}(\vec{\varrho} + \gamma^0 \mu + \sigma) \right)$$

The two point function yields

$$\Gamma^{(2)} = m_0^2 - \ell_1 + \underbrace{L_2(\mathbf{q}^2)}_{\text{Lower form}} + \frac{\gamma}{2} \mathbf{q}^2 + \frac{3\kappa}{2} ar{\sigma}^2$$

known from GN model!

▶ No inhomogeneous phases - as long as m_0^2, γ, κ are chosen such that action is bounded

Second example: $U(2N_f)$ chiral symmetry

• Study full chiral symmetry group $U(2N_f)$

$$S_{\bar{\psi},\psi,\sigma,\eta_4,\eta_5} = \int \mathrm{d}^3x \Big[N_{\mathrm{f}} \frac{\sigma^2 + \eta_4^2 + \eta_5^2}{2\lambda} + \bar{\psi}_f \left(\tilde{\varrho} + \gamma^0 \mu + \sigma + \mathrm{i}\gamma_4 \eta_4 + \mathrm{i}\gamma_5 \eta_5 \right) \psi_f \Big]$$

• Two-point function as $\bar{\eta}_4 = \bar{\eta}_5 = 0$ through chiral rotation

$$S_{\text{eff}}^{(2)}/N_f = \frac{\beta}{2} \int \frac{d^2q}{(2\pi)^2} \sum_{\phi \in \{\sigma,\eta_4,\eta_5\}} |\delta \tilde{\phi}(\mathbf{q})|^2 \Gamma_{\phi}^{(2)}(\mathbf{q}^2)$$
$$\Gamma_{\sigma}^{(2)} = \frac{1}{\lambda} - \ell_1 + L_2(\mathbf{q}^2)$$
$$\Gamma_{\eta_4}^{(2)} = \Gamma_{\eta_5}^{(2)} = \frac{1}{\lambda} - \ell_1 - \frac{1}{2}\mathbf{q}^2\ell_2(\mathbf{q}^2)$$

Second example: $U(2N_f)$ chiral symmetry

• Study full chiral symmetry group $U(2N_f)$

$$S_{\bar{\psi},\psi,\sigma,\eta_4,\eta_5} = \int \mathrm{d}^3x \Big[N_{\mathrm{f}} \frac{\sigma^2 + \eta_4^2 + \eta_5^2}{2\lambda} + \bar{\psi}_f \left(\tilde{\varrho} + \gamma^0 \mu + \sigma + \mathrm{i}\gamma_4 \eta_4 + \mathrm{i}\gamma_5 \eta_5 \right) \psi_f \Big]$$

• Two-point function as $\bar{\eta}_4 = \bar{\eta}_5 = 0$ through chiral rotation

$$S_{\text{eff}}^{(2)}/N_f = \frac{\beta}{2} \int \frac{d^2q}{(2\pi)^2} \sum_{\phi \in \{\sigma,\eta_4,\eta_5\}} |\delta \tilde{\phi}(\mathbf{q})|^2 \Gamma_{\phi}^{(2)}(\mathbf{q}^2)$$
$$\Gamma_{\sigma}^{(2)} = \frac{1}{\lambda} - \ell_1 + L_2(\mathbf{q}^2)$$
$$\Gamma_{\eta_4}^{(2)} = \Gamma_{\eta_5}^{(2)} = \frac{1}{\lambda} - \ell_1 - \frac{1}{2}\mathbf{q}^2\ell_2(\mathbf{q}^2)$$

 \blacktriangleright The two-point functions are again monotonically increasing with $|{\bf q}|$

Marc Winstel

Inhomogeneous phases in 2 + 1-dimensional Four-fermion models

$U(2N_f)$ chiral symmetry + Parity breaking

• Study full chiral (flavor) symmetry group $U(2N_f)$ + possibility of parity breaking

$$S = \int \mathrm{d}^3x \left(N_\mathrm{f} \frac{\sigma^2 + \eta_4^2 + \eta_5^2}{2\lambda} + N_\mathrm{f} \frac{\eta_{45}}{2\lambda_{45}} + \bar{\psi}_f \left(\partial \!\!\!/ + \gamma_0 \mu + \sigma + \mathrm{i}\gamma_4 \eta_4 + \mathrm{i}\gamma_5 \eta_5 + \mathrm{i}\gamma_{45} \eta_{45} \right) \psi_f \right)$$

• Two-point function as $\bar{\eta}_{45} = 0$ when $\lambda_{45} = \lambda$

$$S_{\text{eff}}^{(2)}/N_f = \frac{\beta}{2} \int \frac{d^2q}{(2\pi)^2} \sum_{\phi \in \{\sigma,\eta_4,\eta_5,\eta_{45}\}} |\delta\tilde{\phi}(\mathbf{q})|^2 \Gamma_{\phi}^{(2)}(\mathbf{q}^2)$$
$$\Gamma_{\eta_{45}}^{(2)} = \Gamma_{\sigma}^{(2)} = \frac{1}{\lambda} - \ell_1 + L_2(\mathbf{q}^2)$$
$$\Gamma_{\eta_4}^{(2)} = \Gamma_{\eta_5}^{(2)} = \frac{1}{\lambda} - \ell_1 - \frac{1}{2}\mathbf{q}^2\ell_2(\mathbf{q}^2)$$

• When $\lambda_{45} \neq \lambda$: Offdiagonal terms come into play!

$U(2N_f)$ chiral symmetry + Parity breaking

- CRC-TR 211
- Study full chiral (flavor) symmetry group $U(2N_f)$ + possibility of parity breaking
- When $\lambda_{45} \neq \lambda$: Offdiagonal terms come into play!
- $\phi_{\pm} \sim (\alpha \sigma \pm \beta \eta_{45})$

$$S_{\text{eff}}^{(2)}/N_{f} = \frac{\beta}{2} \int \frac{d^{2}q}{(2\pi)^{2}} \sum_{\phi \in \{\eta_{4}, \eta_{5}, \phi_{+}, \phi_{i}\}} |\delta\tilde{\phi}(\mathbf{q})|^{2} \Gamma_{\phi}^{(2)}(\mathbf{q}^{2})$$

$$\Gamma_{\eta_{4}}^{(2)} = \Gamma_{\eta_{5}}^{(2)} = \frac{1}{\lambda} - \ell_{1} - \frac{1}{2} \mathbf{q}^{2} \ell_{2}(\mathbf{q}^{2})$$

$$\Gamma_{\phi_{\pm}}^{(2)} = \frac{1}{2\lambda} + \frac{1}{2\lambda_{45}} - \ell_{1} - \frac{1}{2} \left(\mathbf{q}^{2} + 4(\bar{\sigma}^{2} + \bar{\eta}_{45}^{2}) + C_{\pm}(\bar{\sigma}, \bar{\eta}_{45}) \right) \ell_{2}(\mathbf{q}^{2})$$

This is still montonically increasing

- $c_j \in \{1, i\gamma_4, i\gamma_5, \gamma_{45}, \vec{\tau}, i\vec{\tau}\gamma_4, i\vec{\tau}\gamma_5, \vec{\tau}\gamma_{45}\}$ with corresponding scalars ϕ_j $S = \int d^3x \left[N_f \sum_i \frac{\phi_i^2}{2\lambda} + \bar{\psi}_f \left(\partial + \gamma_0 \mu + \sum_j c_j \phi_j \right) \psi_f \right]$
- 16×16 matrix in field space has to be diagonalized to compute $S_{\text{eff}}^{(2)}$
- ▶ In principle: Possible, but roots of high order polynomials occur \Rightarrow Not solvable

- Studied inhomogeneous phases in Four-Fermion and Yukawa models in 2 + 1-dimension
- No inhomogeneous condensation via stability analysis in the renormalized limit
- Strong regularization scheme dependence at finite regulator values
- Inhomogeneous condensates with energy barrier towards homogeneous ground state still possible
 - No evidence found in Gross-Neveu model and extensions via optimization on the lattice

Ongoing studies regarding inhomogeneous phases

- Regularization scheme dependence in 3 + 1 dimensions
- Scalar lattice field theory negative wave function renormalization & inhomogeneous order parameters with bosonic fluctuations

Appendix

Symmetries and chiral imbalance

• Discrete chiral symmetries (4×4 Representation of Euclidean Dirac algebra)

$$\begin{array}{ll} \psi_f \to \gamma_4 \psi_f \,, & \bar{\psi}_f \to -\bar{\psi}_f \gamma_4 \,, & \sigma \to -\sigma, \\ \psi_f \to \gamma_5 \psi_f \,, & \bar{\psi}_f \to -\bar{\psi}_f \gamma_5 \,, & \sigma \to -\sigma \end{array}$$

- $\gamma_{45} = i\gamma_4\gamma_5$ generates continuous (chiral) symmetry
- Dirac-Operator is block-diagonal

$$Q[\mu, \mu_{45}, \sigma] = \begin{pmatrix} Q^{(2,+)}[\mu + \mu_{45}, \sigma] & 0\\ 0 & Q^{(2,-)}[\mu - \mu_{45}, \sigma] \end{pmatrix}$$

Dirac operators build from irreducible fermion representation

$$Q^{(2,\pm)}[\mu,\sigma] = \pm \tau_2(\partial_0 + \mu) \pm \tau_3 \partial_1 \pm \tau_1 \partial_2 + \sigma$$

- $\mu \neq 0, 0 \leq \mu_{45} \leq \mu$ increases chiral imbalance, i.e. difference between $\mu_L = \mu + \mu_{45}$ for upper 2 comp. and $\mu_R = \mu \mu_{45}$ for lower 2 comp.
- ▶ What are the effects on the respective (in-)homogeneous phases?
- \Rightarrow Study with two different lattice regularizations using naive fermions and different coupling to σ

Homogeneous phase diagram, $\sigma \left(\mathbf{x} ight) =$ const.

- $\sigma(\mathbf{x}) = \bar{\sigma} = \text{const.}$, Minimization of lattice action, identical for both discretization
- ▶ Theoretically observed symmetry $\mu_{45} \leftrightarrow \mu$ & $\mu \rightarrow -\mu$ & $\mu_{45} \rightarrow -\mu_{45}$

 $a\sigma_0 = 0.2327, L\sigma_0 = 27.92$

Homogeneous phase diagram, $\sigma(\mathbf{x}) = \text{const.}$

CRC-TR 211

• Results for $\mu_{45} = 0$ are already quite close to continuum results¹⁰

Marc Winstel

Inhomogeneous phases in 2 + 1-dimensional Four-fermion models

The homogeneous order parameter $\bar{\sigma}$

- Order parameter at $T/\sigma_0 = 0.0716$ with $a\sigma = 0.2327, L\sigma_0 = 27.92$
- ▶ Plateau for $\mu_L/\sigma_0 = \mu/\sigma_0 + \mu_{45}/\sigma_0 \leqslant 1.0$, where $\bar{\sigma} \approx \sigma_0$, then continuous decrease of $\bar{\sigma}$
- Competition of $|\mu_L/\sigma_0| > 1.0$ and $|\mu_R/\sigma| < 1.0$ leads to continuous decrease

Stability analysis on multiple lattices

Marc Winstel

Inhomogeneous phases in 2 + 1-dimensional Four-fermion models

22 / 17

Minimization with respect to $\sigma = \sigma (\mathbf{x})$

- 0.4

- 0.2

0.0 %

-0.2-0.4

- 0.4

- 0.2

0.0

-0.2

-0.4

10

10

Within instability region

 $a\sigma_0 \approx 0.3649$, $L\sigma_0 = 10.22,$ $T/\sigma_0 = 0.114$

Marc Winstel

Inhomogeneous phases in 2 + 1-dimensional Four-fermion models

 Definition of irreducible representation of fermions in 2+1 dimensions Dirac matrices as Pauli matrices

$$\gamma^0 = \sigma_1, \ \gamma^1 = \sigma_2, \ \gamma^2 = \sigma_3 \tag{2}$$

$$\gamma^0 = -\sigma_1 \ \gamma^1 = -\sigma_2, \ \gamma^2 = -\sigma_3$$
 (3)

- \Rightarrow Non-trivial γ_5 not available
- Which symmetry is spontaneously broken by the condensate ?

Parity as inversion of all spatial coordinates equivalent to rotation

$$\begin{array}{c} (x_0, x_1, x_2)^T \xrightarrow{P} (x_0, x_1, -x_2)^T \\ \psi \xrightarrow{P} -i\gamma_2 \psi \\ \bar{\psi} \xrightarrow{P} -i\bar{\psi}\gamma_2 \end{array}$$

- Obtain $\sigma \xrightarrow{P} -\sigma$
- \blacktriangleright Non-vanishing σ indicates spontaneous breaking of parity

• Use four component spinors via combination of two inequivalent irreducible spinors ($\tau_i \equiv$ Pauli matrices in isospin space)

$$\begin{array}{ll} \gamma_{\nu} = \tau_3 \otimes \sigma_{\nu+1}, & \gamma_4 = \tau_1 \otimes \mathbb{1}, \\ \gamma_5 = -\tau_2 \otimes \mathbb{1}, & \gamma_{45} = i\gamma_4\gamma_5 = \mathsf{diag}(\mathbb{1}, -\mathbb{1}) \end{array}$$

- Parity to be defined via tensor product with au_1
- Mass term $\propto \bar{\psi}\psi$ now invariant under parity

Chiral transformations

Symmetries of free massless fermions in 2+1 dimensions $(U(2N_f))$

$$\psi_f \to e^{i\theta\Gamma}\psi_f \qquad \Gamma \in \{\mathbb{1}, \gamma_{45}, \gamma_4, \gamma_5\}$$

▶ For the Gross-Neveu model only a subgroup is realized

$$\psi_f \to \gamma_5 \psi_f, \ \bar{\psi}_f \to -\bar{\psi}_f \gamma_5$$
 (5)

$$\psi_f \to \gamma_4 \psi_f, \ \bar{\psi} \to -\bar{\psi}_f \gamma_4$$
 (6)

Together with this discrete transformation we have continuous symmetries

$$\psi_f \to e^{i\phi\gamma_{45}}\psi_f, \ \bar{\psi}_f \to \bar{\psi}_f e^{-i\phi\gamma_{45}}$$
(7)

$$\psi_f \to e^{i\alpha}\psi_f, \ \bar{\psi}_f \to \bar{\psi}_f e^{-i\alpha}$$
 (8)

Combination of (7) with (5) reproduces (6)

