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Introduction cnc.-rm

> Simple strong-interaction models feature so-called inhomogeneous, chiral phase
» Chiral condensate breaks translational invariance spontaneously ({1)) = f(x)

» Indications for such phases and related phenomena found in QCD*
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1 + 1-dimensional Gross-Neveu model in the mean-field approximation®3

'W.-j. Fu, J. M. Pawlowski, F. Rennecke, Phys. Rev. D 2020, 101, 054032.
2M. Thies, K. Urlichs, Phys. Rev. D 2003, 67, 125015.
3A. Koenigstein et al., 2021.
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Introduction cnc.-rm

> In mean-field models inhomogeneous phases are:
® Established in 1 + 1 dimensions
* Also found in 3 + 1 dimensions®, but the results are questionable ...

@ In the renormalizable Quark-Meson model the action gets unbounded when renormalizing®
@ In non-renormalizable NJL model the results depend on the regularizations scheme = see
Laurin Pannullos talk today

> In 2 + 1 dimensions we refer to Refs.®”8

> In short: Inhomogeneous phases are found at finite regulator values depending on
regularization scheme, but vanish when A — oo

“M. Buballa, S. Carignano, Prog. Part. Nucl. Phys. 2015, 81, 39-96.

5s, Carignano, M. Buballa, B.-J. Schaefer, Phys. Rev. D 2014, 90, 014033.

5M. Buballa, L. Kurth, M. Wagner, M. Winstel, Phys. Rev. D 2021, 103, 034503.
R. Narayanan, Phys. Rev. D 2020, 101, 096001.

8L. Pannullo, M. Wagner, M. Winstel, Symmetry 2022, 14, 265.
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Motivation: 2+41-dimensional GN model cnc.-rm
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» Studied 2 + 1-dim. Gross-Neveu model, which is a Four-fermion model with scalar (¢)?
channel

= Can this result be transferred to more involved models in 2+1 dimensions?
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A more general Four-fermion model? cnc.-rm

> In principle, stability analysis applies to every kind of interaction-channel

> 4 x 4 Dirac Algebra allows for 16 possible bilinears, i.e.

{va}a=1,..16 = {1,iv4,1v5, a5 = Va5, V> 5[ Vs Yo ds iV V4s i, }

» Vector interactions do not exhibit chiral condensation in the mean-field approximation®

= Inhomogeneous chiral phases are not expected

°G. Parisi, Nucl. Phys. B 1975, 100, 368—388.
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A more general Four-fermion model? cnc.-rm

> In principle, stability analysis applies to every kind of interaction-channel

> 4 x 4 Dirac Algebra allows for 16 possible bilinears, i.e.

{vata=1,.,16 = {1,174, 175, Va5 = 17475, V> 5 (V> Yo l, VY45 190755 }

» Vector interactions do not exhibit chiral condensation in the mean-field approximation®

= Inhomogeneous chiral phases are not expected

v

Focus lies on {1,174, 17s5, 745} but allow combinations with isovector 7 = (71, 72, 73)

{vB}B=1,..,16 = {1, 174,175, V45, T, 1774, iT75, Tya5}

°G. Parisi, Nucl. Phys. B 1975, 100, 368—388.
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A more general Four-fermion model? cnc.-rm

> In principle, stability analysis applies to every kind of interaction-channel

> 4 x 4 Dirac Algebra allows for 16 possible bilinears, i.e.

{vata=1,.,16 = {1,174, 175, Va5 = 17475, V> 5 (V> Yo l, VY45 190755 }

» Vector interactions do not exhibit chiral condensation in the mean-field approximation®

= Inhomogeneous chiral phases are not expected

v

Focus lies on {1,174, 17s5, 745} but allow combinations with isovector 7 = (71, 72, 73)

{vB}B=1,.16 = {1,174, 175, Va5, T, iT74, iT75, TY45}

v

All kind of chemical potentials can be included, i.e. up, u4s, it5, b4 With corresponding
structures in Dirac space, but also isospin potential py

°G. Parisi, Nucl. Phys. B 1975, 100, 368—388.
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cn?—m}

Chiral/lsospin imbalance in the Gross-Neveu model

> Stability analysis on the lattice of GN model with 1145 or 11

» Obtain instability region of 0 = & for one of two discretizations
aog = 0.2327, Log = 23.27
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A more general Four-Fermion model cnc.-rm

» Bosonization of Four-Fermion models leads to the action

Serli0.9) = [ o (M% + zﬁ(x)Qw))

Q=7+ mn+M+) cjd;(x)
J

> Equivalent action after integrating fermions out

Sert[@]/N¢ = fd% %ﬂ") — TrlnQ

> M contains all type of allowed mass terms, set M = 0 for chiral limit

(i) ~ (Pejp)

Marc Winstel Inhomogeneous phases in 2 + 1-dimensional Four-fermion models



A more general Four-Fermion model cnc.-rm

> Bosonization of Four-Fermion models leads to the action ¢; € {73}3217___16

Serli0.9) = [ o (wa + zﬁ(x)Qw))

Q=7+ m+M+) cid;(x)
J

> Equivalent action after integrating fermions out

Sert[@]/N¢ = fd% %ﬂ") — TrlnQ

> M contains all type of allowed mass terms, set M = 0 for chiral limit

(i) ~ (Pejp)
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The stability analysis cnc.-rm

v

Analyze the stability of the homogeneous ground state gg = 5

¢j = ¢j + 00;(x)

v

Mean-field approximation = Find homogeneous ground state via optimization

» Compute corrections to the action due to perturbation d¢;(q)

v

Second order corrections determine whether action is lowered by the perturbation
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The stability analysis in the GN model cnc.-rm

Seilo]/ Nt = % Jd% (& + 60(x))2 — Tr(In(d + yopt + & +50(x)))

=Q
» Expand Seff[o + do] in powers of do yields

1 /oy
SN, = % f &z (50(x))” + 51&(@ 55Q 150)

> Evaluating traces and fourier transform gives

1 d’q ..

SG /NG = 58 | Gtz lan(@) T (o)
1

F®(q?) = y - —5(a’ + 40%)la(a”)

» L(q?) is monotonically increasing Yy, T, &
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The two-point function in the GN model CRC-TR2n
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Analyzing the two-point function for other models cnc.-rm

> The stability analysis can be applied to all Four-fermion channels

s@ /Ny = L

2 @alsss@P +5 3 60 ()o@, (a)
.3

I‘Fi% = Jd3ptr (cié_l(p + q)Cjé_l(p)>

> I'y,4,(q) gives fermionic contribution to curvature
= Strategy: Identify Ly(q), as found for the GN model, for more complex models

» Potential terms and standard kinetic terms will not change the monotonic behavior of I'?)
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First example: Gross-Neveu-Yukawa model cnc.-rm

S, 1, 0] = fd%(%ggﬂ + %(60)2 + 204 + 9y (%ay +~% + ha) w)

> By redefinitions of fields and couplings

STE] - (m? + 3000 + o) = n (Det(d + % + o))

> The two point function yields

3K
F(Q) = m% — 0+ Lg(qz) +lq2 + —Ker
N~—— 2 2

known from GN model!

> No inhomogeneous phases - as long as mg,'y, k are chosen such that action is bounded
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Second example: U(2Ny) chiral symmetry cnc.-rm

» Study full chiral symmetry group U(2Ny)

2 2 2 —
Spaomims = fd%[NfJ R g (ﬁ +%+ o + i + i’YsUs) %Df]

» Two-point function as 74 = 75 = 0 through chiral rotation

2 ~
s =4[ Y P @)

de{oma,ms}
r@ - L g4 L
o )\ 1 2(q )
1 1
T =T = — 6 - a’la(a?)
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Second example: U(2Ny) chiral symmetry cnc.-rm

» Study full chiral symmetry group U(2Ny)

2 2 2 —
Spaomims = fd%[NfJ R g (ﬁ +%+ o + i + i’YsUs) %Df]

» Two-point function as 74 = 75 = 0 through chiral rotation

2 2 ~ 2
s =4[ Y P @)
pe{oma,ns}

1
I == — 61+ Lo(q?)

A
F(Q)_F@)_l_g_lzg 2

» The two-point functions are again monotonically increasing with |
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U(2Ny) chiral symmetry + Parity breaking cn.-rm

» Study full chiral (flavor) symmetry group U(2Ny) + possibility of parity breaking

2 4 2
o’ +n +77 145 - . . .
S = Jd?’x (Nf 231\ >+ N e + g (7 + Yop + 0 + iyana + iys5ms + 1745745) ¢f>

» Two-point function as 745 = 0 when A\y5 = A

2 ~
sy =i Y eaPr@)

¢E{0'77747775 77745}

1
Ly =TY = oAt Ly(q?)
1 1
PR =T =5 -6 - 5a’ha(a?)

> When M5 # A: Offdiagonal terms come into play!
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U(2Ny) chiral symmetry + Parity breaking cnc.-rm

» Study full chiral (flavor) symmetry group U(2N¢) + possibility of parity breaking
> When \g5 # A: Offdiagonal terms come into play!
> ¢+ ~ (a0 + Bnus)

2 2 ~ 2
s =4[ Y pa@PrYe)
¢e{na,ms,b+,0:}

r®_r@— - _p — %q2€2(q2)

1 1 1
0P = ox+ 55— — 6= 5 (€ + 402 + 1) + C2(0.715) ) ol )

> This is still montonically increasing
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The full model cncfrm

> c;j € {1,iva, 15, Va5, T, 1774, iT75, Tyas} with corresponding scalars ¢;

2
S=fd3x NfZ;b—;\-i-l/;f ¢+’YOM+ZCJ¢J' vy
i J

» 16 x 16 matrix in field space has to be diagonalized to compute Sé?f)

> In principle: Possible, but roots of high order polynomials occur = Not solvable
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Conclusions cnc.-rm

» Studied inhomogeneous phases in Four-Fermion and Yukawa models in 2 + 1-dimension
> No inhomogeneous condensation via stability analysis in the renormalized limit
» Strong regularization scheme dependence at finite regulator values

> Inhomogeneous condensates with energy barrier towards homogeneous ground state still
possible

® No evidence found in Gross-Neveu model and extensions via optimization on the lattice

Ongoing studies regarding inhomogeneous phases

> Regularization scheme dependence in 3 + 1 dimensions

> Scalar lattice field theory - negative wave function renormalization & inhomogeneous
order parameters with bosonic fluctuations
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Appendix



Symmetries and chiral imbalance cnc.-rm

» Discrete chiral symmetries (4 x 4 Representation of Euclidean Dirac algebra)
VYp = yaly, Yy — —pya, o — -0,
Yy = vsf, Yp o> =Ygy, 00— —0

> 45 = iv4y5 generates continuous (chiral) symmetry
» Dirac-Operator is block-diagonal

QP [+ pas, 0] 0 >
) 70- = —
Q[/’I/ N45 ] ( 0 Q(Q7 )[/J _ ,LL45, 0_]
> Dirac operators build from irreducible fermion representation
QA [, 0] = £72(00 + p) £ 7301 £ 7105 + 0

» 1 # 0,0 < pugs < pincreases chiral imbalance, i.e. difference between iy, = p + pgs for upper 2
comp. and pur = p — g5 for lower 2 comp.
» What are the effects on the respective (in-)homogeneous phases?

= Study with two different lattice regularizations using naive fermions and different coupling to o
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Homogeneous phase diagram, o (x) = const. cnc.-rm

» o (x) = & = const., Minimization of lattice action, identical for both discretization
> Theoretically observed symmetry pig5 < p & p— —p & p45 — —pia5
aog = 0.2327, Log = 27.92

%0/1

“ss5, 1.0 1.0 Woe
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Homogeneous phase diagram cnc.-rm

» Results for juu5 = 0 are already quite close to continuum results'®

Fixed lattice spacing aco = 0.2327 Fixed spatial extent Log ~ 28.5
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9K, Klimenko, Z. Phys. C 1988, 37, 457.
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The homogeneous order parameter o cnc.-rm
1.0
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» Order parameter at T'/og = 0.0716 with ao = 0.2327, Loy = 27.92
» Plateau for uyp/og = p/og + pas/oo < 1.0, where & ~ oy, then continuous decrease of &
» Competition of |ur/og| > 1.0 and |ur/o| < 1.0 leads to continuous decrease
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Stability analysis on multiple lattices CRC-TR2n
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Minimization with respect to

Within instability region

aog ~ 0.3649,
Log = 10.22,
T/op = 0.114
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Phase diagram of 1 4 1-dim. GN in the large-N; limit cnc.-rm
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Chirality operator cnc.-rm

> Definition of irreducible representation of fermions in 2+1 dimensions
Dirac matrices as Pauli matrices

70 =01, 71 =02, 72 =03 (2)

’Yo = =01 ’Vl = —02, 72 = —03 (3)
= Non-trivial 75 not available

> Which symmetry is spontaneously broken by the condensate ?
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Parity in 2+1 dimensions cnc.-rm

> Parity as inversion of all spatial coordinates equivalent to rotation

(fEO,m’l,ﬂfz)

» Obtain 0 & —¢

> Non-vanishing ¢ indicates spontaneous breaking of parity

Marc Winstel
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Chiral symmetry transformation cnc.-rm

» Use four component spinors via combination of two inequivalent irreducible spinors (7; =
Pauli matrices in isospin space )

’71!27—3@0-1/-1-17 74:7-1®]]-a
V5= -T2 ®1L, a5 =iysys = diag(l, —1)

> Parity to be defined via tensor product with 7|

» Mass term octfeh now invariant under parity
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Chiral transformations cnc.-rm

» Symmetries of free massless fermions in 2+1 dimensions (U(2Nf))

¢f - ei9F¢f I'e {]17745774775}

> For the Gross-Neveu model only a subgroup is realized

bf = Vb5, Y = —ss (5)
bf = by, Y=~ (6)
> Together with this discrete transformation we have continuous symmetries
by — VY, Gy preT IO (7)
b — €y, - hre (8)

» Combination of (7) with (5) reproduces (6)
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