Inhomogeneous phases in the 3+1-dimensional mean-field Nambu-Jona-Lasinio model on the lattice

Laurin Pannullo, Marc Winstel, Marc Wagner

Goethe University Frankfurt

SEWM 2022, Paris

 Several low-energy effective models exhibit a chiral inhomogeneous phase (IP) i.e. a space-dependent chiral condensate

[M. Buballa, S. Carignano, Prog. Part. Nucl. Phys., 81, 39-96 (2015), arXiv: 1406.1367]

Indications for such phases and related moat regimes in QCD

[R. D. Pisarski, F. Rennecke, Phys. Rev. Lett., 127, 152302 (2021), arXiv: 2103.06890

[W.-j. Fu et al., Phys. Rev. D,. 101, 054032 (2020), arXiv: 1909.02991]

- Some of these models suffer from non-renormalizability and an inherent regulator dependence
- Vast majority of investigations in mean-field

[M. Thies, K. Urlichs, Phys. Rev., D67, 125015 (2003), arXiv: hep-th/0302092]

[A. Koenigstein et al., (2021), arXiv: 2112.07024]

• Long term goal: Investigate inhomogeneous phases in 3 + 1-dimensional (Four-Fermi) models beyond mean-field via lattice Monte-Carlo simulations.

- Long term goal: Investigate inhomogeneous phases in 3 + 1-dimensional (Four-Fermi) models beyond mean-field via lattice Monte-Carlo simulations.
- But first: Are IPs a consistent feature when applying different regularization schemes in 3 + 1-dimensional Four-Fermi models? Is the lattice a suitable regularization in these models?

- Long term goal: Investigate inhomogeneous phases in 3 + 1-dimensional (Four-Fermi) models beyond mean-field via lattice Monte-Carlo simulations.
- But first: Are IPs a consistent feature when applying different regularization schemes in 3 + 1-dimensional Four-Fermi models? Is the lattice a suitable regularization in these models?
- Start with stability analysis of the 3 + 1-dimensional mean-field Nambu-Jona-Lasinio (NJL) model on the lattice

3 + 1-dimensional mean-field NJL model

$$S = \int \mathrm{d}^3x \int_0^\beta \left\{ \bar{\psi}(\partial \!\!\!/ + \gamma_0 \mu + m_0)\psi + G\left[\left(\bar{\psi}\psi\right)^2 - \left(\bar{\psi}\gamma_5 \tau\psi\right)^2\right] \right\}$$

3 + 1-dimensional mean-field NJL model

$$S = \int d^3x \int_0^\beta \left\{ \bar{\psi}(\partial \!\!\!/ + \gamma_0 \mu + m_0)\psi + G\left[\left(\bar{\psi}\psi\right)^2 - \left(\bar{\psi}\gamma_5\tau\psi\right)^2\right] \right\}$$

Bosonization, integration over fermions

$$S_{\text{eff}} = \int d^3x \int_0^\beta d\tau \, \frac{\sigma^2 + \boldsymbol{\pi}^2}{4G} - \ln \text{Det}(\boldsymbol{\partial} + \gamma_0 \boldsymbol{\mu} + \boldsymbol{m}_0 + \boldsymbol{\sigma} + i\gamma_5 \boldsymbol{\tau} \cdot \boldsymbol{\pi})$$

3 + 1-dimensional mean-field NJL model

$$S = \int \mathrm{d}^3x \int_0^\beta \left\{ \bar{\psi}(\partial \!\!\!/ + \gamma_0 \mu + m_0)\psi + G\left[\left(\bar{\psi}\psi\right)^2 - \left(\bar{\psi}\gamma_5\tau\psi\right)^2\right] \right\}$$

Bosonization, integration over fermions
$$S_{\mathrm{eff}} = \int \mathrm{d}^3x \int_0^\beta \mathrm{d}\tau \; \frac{\sigma^2 + \pi^2}{4G} - \ln \mathrm{Det}(\partial \!\!\!/ + \gamma_0\mu + m_0 + \sigma + \mathrm{i}\gamma_5\tau\cdot\pi)$$

• Mean-field approximation: only field configurations that minimize $S_{\rm eff}$ contribute \Rightarrow path-integral is reduced to a minimization problem

$$S_{\text{eff}} = \int d^3x \int_0^\beta d\tau \, \frac{\sigma^2 + \boldsymbol{\pi}^2}{4G} - \ln \text{Det}(\boldsymbol{\partial} + \gamma_0 \boldsymbol{\mu} + \boldsymbol{m}_0 + \sigma + i\gamma_5 \boldsymbol{\tau} \cdot \boldsymbol{\pi})$$

- 3 parameters: the coupling G, the bare fermion mass m_0 and the regulator Λ
- Parameters are tuned such that certain observable assume physically motivated values [S. P. Klevansky, *Rev. Mod. Phys.*, 64, 649–708 (1992)]
 - Pion mass $m_{\pi} = 0$ (chiral limit) $\Rightarrow m_0 = 0$
 - Pion decay constant $f_{\pi} = 92.4 \text{ MeV}$
 - Constituent quark mass M_0 in the range of 200 MeV 500 MeV
 - \Rightarrow will be used to control the value of the regulator

Phase diagram of the 3 + 1-d mean-field NJL model

[D. Nickel, Phys. Rev. D,. 80, 074025 (2009), arXiv: 0906.5295]

Phase diagram of the 3 + 1-d mean-field NJL model

[D. Nickel, Phys. Rev. D,. 80, 074025 (2009), arXiv: 0906.5295]

- How to detect an inhomogeneous phase in the 3 + 1-dimensional NJL model?
- Two choices:
 - Use explicit ansatz for the chiral condensate / minimize on the lattice
 - \Rightarrow Difficult, sometimes impossible and often numerically expensive
 - Analyze stability of the homogeneous minimum
 - \Rightarrow Flexible and cheap \Rightarrow better suited for our investigation

- Investigate curvature of the effective action under inhomogeneous perturbations $\delta \tilde{\phi}({\pmb q})$ at the homogeneous minimum
- Curvature in direction $\delta \tilde{\phi}(q)$ is given by the bosonic two-point function $\Gamma_{\phi}^{(2)}(q)$
- Simple quantity in the mean-field approximation

Example two-point function

Regularization of the loop integral

- The loop integral is UV-divergent and needs to be regularized
- Possible regularization scheme choices
 - Most common: Pauli-Villars

e.g. [D. Nickel, Phys. Rev. D,. 80, 074025 (2009), arXiv: 0906.5295] [M. Buballa et al., The Eur. Phys. J. Special Top., 229, 3371–3385 (2020), arXiv: 2006.02133]

- Momentum cutoff might have some conceptual problems
- Successful applications of energy cutoffs and dim. regularization when using ansätze

[P. Adhikari, J. O. Andersen, Phys. Rev. D,. 95, 036009 (2017), arXiv: 1608.01097] [D. Ebert et al., Phys. Rev. D,. 84, 025004 (2011),

arXiv: 1102.4079]

• How do lattice regularizations fit in?

Investigate three different lattice regularizations

- Two variations of naive fermions
- SLAC fermions
 - Linear dispersion relation, thus conceptually very similar to a sharp cutoff in the continuum

Investigate three different lattice regularizations

- Two variations of naive fermions
- SLAC fermions \Leftarrow Will be the focus of this talk.
 - Linear dispersion relation, thus conceptually very similar to a sharp cutoff in the continuum

• Instability detection restricted to $\mu \leq \Lambda$

- The lattice results are calculated at T = 8 MeV and $L^{-3} = (8 \text{ MeV})^3$
- One of the naive discretizations does not exhibit an instability

• No single point where all regularizations show an instability

- Energetically preferred chiral condensate can be computed on the lattice
- Restrict to one-dimensional modulations due to cost

• Artifactual modulation of the condensate

- Artifactual modulation of the condensate
- Suspicious and problematic features of two-point function

• Why does SLAC show such a different behavior than the momentum cutoff?

CRC-TR 211

- Why does SLAC show such a different behavior than the momentum cutoff?
- Differences between the regularizations:
 - I The lattice results are at finite temperature and volume
 - II The SLAC fermions regulate the temporal direction the momentum cutoff does not
 - III The cutoff region of SLAC fermions is cubic and that of the 3D momentum cutoff is spherical.
- Analyze influence of the differences

- Why does SLAC show such a different behavior than the momentum cutoff?
- Differences between the regularizations:
 - I The lattice results are at finite temperature and volume
 - II The SLAC fermions regulate the temporal direction the momentum cutoff does not
 - III The cutoff region of SLAC fermions is cubic and that of the 3D momentum cutoff is spherical.
- Analyze influence of the differences

- In conventional lattice field theory infinite volume and T=0 only via extrapolation
- In the stability analysis we only need to compute the 1-loop diagram via momentum sums/integrals
- continue momentum sums to integrals \Rightarrow exact infinite volume and T = 0 on the lattice

SLAC in finite volume

SLAC, $T \approx 8 \text{ MeV}$, $M_0 = 250 \text{ MeV}$, $m_{\pi} = 0 \text{ MeV}$

SLAC in infinite volume

SLAC in infinite volume vs. 3D momentum cutoff

3D Cutoff

SLAC in infinite volume

CRC-TR 211

• Differences between the regularizations:

- I The lattice results are at finite temperature and volume
- II The SLAC fermions regulate the temporal direction the momentum cutoff does not
- III The cutoff region of SLAC fermions is cubic and that of the 3D momentum cutoff is spherical

• Differences between the regularizations:

- I The lattice results are at finite temperature and volume
- II The SLAC fermions regulate the temporal direction the momentum cutoff does not
- III The cutoff region of SLAC fermions is cubic and that of the 3D momentum cutoff is spherical
- Perform continuum limit in temporal direction

Conclusions:

- No single point in μM_0 plane where all regularizations show an instability
- A lattice investigation of inhomogeneous phases using SLAC fermions in the 3 + 1-dimensional NJL model is ...
 - at best not straightforward and expensive
 - at worst not possible due to conceptual problems
- Some problems not discussed, e.g., baryon density saturation

Outlook:

- Explore impact of RG consistency
- Understand limitations and problems of cutoff regularizations
- Redo infinite volume, T = 0 investigation with naive/staggered fermions

Appendix

Quark mass vs Cutoff

Quark mass vs Quark mass in Cutoff

naive, $T \approx 8 \text{ MeV}$, $\mu = 341.25 \text{ MeV}$, $M_0 = 250 \text{ MeV}$, $f_{\pi} = 92.4 \text{ MeV}$, $m_{\pi} = 0 \text{ MeV}$ naive, $T \approx 8 \text{ MeV}$, $\mu = 341.25 \text{ MeV}$, $M_0 = 250 \text{ MeV}$, $f_{\pi} = 92.4 \text{ MeV}$, $m_{\pi} = 0 \text{ MeV}$

• Homogeneous fields

 $\phi(x) = \bar{\phi}$

• Minimum is easy to obtain.

Stability analysis

• In general fields have full space dependence

$$\phi(x) = \bar{\phi} + \phi_s(x)$$
$$= \bar{\phi} + \sum_j \tilde{\phi}_s(q_j) e^{ixq_j}$$

Stability analysis

• In general fields have full space dependence

$$\phi(x) = \bar{\phi} + \phi_s(x)$$
$$= \bar{\phi} + \sum_j \tilde{\phi}_s(q_j) e^{ixq_j}$$

Stability analysis

• In general fields have full space dependence

$$\phi(x) = \bar{\phi} + \phi_s(x)$$

= $\bar{\phi} + \sum_j \tilde{\phi}_s(q_j) e^{ixq_j}$

- Former homogeneous minimum might only be saddle point
- Full dependence of $S_{\rm eff}$ on $\phi(x)$ extremely difficult or impossible

(

• Consider only inhomogeneous perturbations

$$egin{aligned} \phi(x) &= ar{\phi} + oldsymbol{\delta} \phi_s(x) \ &= ar{\phi} + \sum_j \,\, oldsymbol{\delta} ilde{\phi}_s(q_j) \, \mathrm{e}^{\mathrm{i} x q_j} \end{aligned}$$

• investigate curvature at homogeneous minimum

