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Introduction

QCD Lagrangian:

L = −1

4
G a
µνG

µνa + q̄i
(
iγµ(Dµ)ij −mδij

)
qj

−→ SU(3) gauge symmetry
−→ UL(Nf )× UR(Nf ) global (approx.) chiral symmetry
−→ anomalous breaking of UA(1) axial symmetry

At low temperatures: spontaneous breaking
SUL(Nf )× SUR(Nf ) −→ SUV (Nf )

Ginzburg-Landau paradigm for second order
(or weakly first order) transitions:

i.) there exists a local order parameter Φ
ii.) the UV free energy can be expanded in terms of Φ
iii.) the free energy has to reflect all symmetries
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Ginzburg–Landau analysis of the chiral transition

GL theory for the chiral transition:
−→ gauge degrees of freedom are integrated out
−→ the emerging order parameter (Φ) is a Nf × Nf matrix
−→ it reflects chiral symmetry: Φ→ LΦR†

The most general free energy functional (no anomaly):

Γ =

∫
x

[
m2 Tr (Φ†Φ) + g1

(
Tr (Φ†Φ)

)2
+ g2 Tr (Φ†ΦΦ†Φ) + ...

+Tr
(
∂iΦ

†∂iΦ) + ...
]

Anomaly → Kobayashi–Maskawa–’t Hooft determinant:
aaaaaaaaaaa∼ det Φ† + det Φ

Expansion of the full free energy leads to incorrect conclusions
−→ at TC long wavelength fluctuations are important
−→ renormalization group is needed
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Ginzburg–Landau analysis of the chiral transition

Pisarski & Wilczek analysis of the Ginzburg–Landau theory 1:

−→ one-loop calculation of the β functions (no anomaly)
−→ counterterms for g1, g2:

δg1, δg2 ∼

Results (ε expansion, ε = 4− d):

βg1 = −εg1 +
N2
f + 4

4π2
g2

1 +
Nf

π2
g1g2 +

3g2
2

4π2

βg2 = −εg2 +
3

2π2
g1g2 +

Nf

2π2
g2

2

No infrared stable fixed point if Nf >
√

3
=⇒ 2nd order transition cannot occur!

Inclusion of the anomaly:
−→ Nf = 2: second order transition with O(4) exponents
−→ Nf = 3: first order transition

1R. D. Pisarski and F. Wilczek, Phys. Rev. D29, 338 (1984)
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Ginzburg–Landau analysis of the chiral transition

Columbia plot with anomaly: [figure taken from F. Cuteri et. al, JHEP11, 141 (2021)]
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Ginzburg–Landau analysis of the chiral transition

Columbia plot without anomaly: [figure taken from F. Cuteri et. al, JHEP11, 141 (2021)]
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Ginzburg–Landau analysis of the chiral transition

New, conjectured Columbia plot: [figure taken from F. Cuteri et. al, JHEP11, 141 (2021)]
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Ginzburg–Landau analysis of the chiral transition

Potential problems with the Pisarski & Wilczek analysis:
−→ it uses the field theoretical RG =⇒ valid only close to the
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Gaussian fixed point
−→ in d = 3 there are more (perturbatively)
aaaarenormalizable operators!
−→ ε expansion is not reliable

Example: superconducting phase transition
−→ Abelian Higgs model: ε expansion predicts a

aaaaaaaaaaaaaaaaaaaaaaa first order transition
−→ Monte Carlo simulations showed that the
aaaatransition can be of second order
−→ IR fixed point is inaccessible in the ε expansion 2

Functional version of the Wilsonian Renormalization Group

2GF & T. Hatsuda, Phys. Rev. D93, 121701 (2016).
aaaaGF & T. Hatsuda, Phys. Rev. D96, 056018 (2017).
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Functional Renormalization Group

FRG generalizes the idea of the Wilsonian RG: fluctuations are
taken into account at the level of the quantum effective action

Z [J] =

∫
Dφe−(S[φ]+

∫
Jφ) ⇒ Γ[φ̄] = − logZ [J]−

∫
Jφ̄

Introduction of a flow parameter k and inclusion of
fluctuations for which q & k

aa Zk [J] =
∫
Dφe−(S[φ]+

∫
Jφ+ 1

2

∫
φRkφ)

−→ regulator: mom. dep. mass
aaaaterm suppressing low modes
−→ take the k → 0 limit
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Functional Renormalization Group

Scale-dependent effective action:

Γk [φ̄] = − logZk [J]−
∫

Jφ̄− 1

2

∫
φ̄Rk φ̄

−→ k ≈ Λ: no fluctuations ⇒ Γk=Λ[φ̄] = S[φ̄]
−→ k = 0: all fluctuations ⇒ Γk=0[φ̄] = Γ[φ̄]

The scale-dependent effective
action interpolates between
classical- and quantum
effective actions

The trajectory depends on Rk

but the endpoint does not

Choice of Rk ↔ choice of scheme
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Functional Renormalization Group

Flow of the effective action is described by the Wetterich
equation:

∂kΓk =
1

2

∫
q

∫
p
Tr [∂kRk(q, p)(Γ

(2)
k + Rk)−1(p, q)] =

1

2

Local potential approximation (LPA):

Γk [φ̄] =

∫
x

(Zk

2
∂i φ̄∂i φ̄+ Vk(φ̄)

)
−→ leading order of the derivative expansion

−→ equivalent statement: momentum dependence only in Γ
(2)
k

Optimal flow equation for the effective potential (Zk ≡ 1):

Rk(q, p) = (k2 − q2)Θ(k2 − q2)δ(p + q)

∂kVk =
k4

6π2
Tr (k2 + V

(2)
k )−1
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Gergely Fejős Second order chiral phase transition in three flavor QCD?



Functional Renormalization Group

Flow of the effective action is described by the Wetterich
equation:

∂kΓk =
1

2

∫
q

∫
p
Tr [∂kRk(q, p)(Γ

(2)
k + Rk)−1(p, q)] =

1

2

Local potential approximation (LPA):

Γk [φ̄] =

∫
x

(Zk

2
∂i φ̄∂i φ̄+ Vk(φ̄)

)
−→ leading order of the derivative expansion

−→ equivalent statement: momentum dependence only in Γ
(2)
k

Optimal flow equation for the effective potential (Zk ≡ 1):

Rk(q, p) = (k2 − q2)Θ(k2 − q2)δ(p + q)

∂kVk =
k4

6π2
Tr (k2 + V

(2)
k )−1
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Fixed points and stability

How to build up the most general Ginzburg–Landau potential
for three flavors in d = 3 in terms of renormalizable operators?

Independent invariant tensors are needed:

I1 = Tr (Φ†Φ), I2 = Tr (Φ†Φ− Tr (Φ†Φ)/3)2

I3 = Tr (Φ†Φ− Tr (Φ†Φ)/3)3

−→ I4, I5, ... are not independent

UA(1) breaking terms:

Idet = det Φ† + det Φ, ((((((((((
Ĩdet = det Φ† − det Φ

−→ Ĩ 2
det could work but it is not independent

−→ Ĩ 2
det = I 2

det + 4I 3
1 /27− 2I1I2/3 + 4I3/3

−→ det Φ† · det Φ = (I 2
det − Ĩ 2

det)/4
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Fixed points and stability

The most general Ginburg–Landau potential (9 couplings!):

Vk [Φ] = m2
k I1 + ak Idet + g1,k I

2
1 + g2,k I2

+ bk I1Idet + λ1,k I
3
1 + λ2,k I1I2 + a2,k I

2
det + g3,k I3 +O(φ7)

Optimized flow: ∂kVk = k4

6π2 Tr (k2 + V
(2)
k )−1

Left hand side:

∂kVk = ∂km
2
k I1 + ∂kak Idet + ∂kg1,k I

2
1 + ∂kg2,k I2

+ ∂kbk I1Idet + ∂kλ1,k I
3
1 + ∂kλ2,k I1I2 + ∂ka2,k I

2
det + ∂kg3,k I3

Right hand side? Need to compatible with the lhs via V
(2)
k

−→ Φ =
∑8

a=0 φ
aT a ≡

∑8
a=0(sa + iπa)T a

−→ V
(2)
k depends on the fields, not invariants!

−→ [k2 +V
(2)
k ]: 18×18 matrix, in practice cannot be inverted
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Fixed points and stability

The most general Ginburg–Landau potential (9 couplings!):

Vk [Φ] = m2
k I1 + ak Idet + g1,k I

2
1 + g2,k I2

+ bk I1Idet + λ1,k I
3
1 + λ2,k I1I2 + a2,k I

2
det + g3,k I3 +O(φ7)

Trick: we need flows of couplings, Φ is not important!

−→ free to choose Φ at each level of the expansion

−→ requirement: [k2 + V
(2)
k ] is easily invertable

−→ e.g. Φ = s0T
0 ⇒ I1 = s2

0/2, Idet = s3
0/3
√

6, ...

Problem: invariants need to be disentangled from each order
−→ O(φ2): 1 invariant I1
−→ O(φ3): 1 invariant Idet

−→ O(φ4): 2 invariants I 2
1 , I2

−→ O(φ5): 1 invariants I1Idet

−→ O(φ6): 4 invariants I 3
1 , I1I2, I

2
det, I3
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Fixed points and stability

Fixed points: βi = 0 ∀ i

First step: solve for marginal couplings
−→ βλ1 = βλ2 = βa2 = βg3 ≡ 0
−→ λ1, λ2, a2, g3 are plugged into the remaining β functions

Second step: solve for relevant couplings

Third step: check stability matrix ∂βi/∂ωj

({ωj} : m2, g1, g2, a, b)

m2 g1 g2 a b # of RD

0 0 0 0 0 5

-0.31496 0.43763 0 0 0 3

-0.38262 0.59726 -0.62042 0 0 2

-0.01786 0.09163 -0.14148 -0.11900 0.39087 4
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Fixed points and stability

m2 g1 g2 a b # of RD

0 0 0 0 0 5

-0.31496 0.43763 0 0 0 3

-0.38262 0.59726 -0.62042 0 0 2

-0.01786 0.09163 -0.14148 -0.11900 0.39087 4

No fixed point with one relevant direction
−→ first order transition?

BUT the third one has a block diagonal stability matrix:
−→ (m2, g1, g2)⊕ (a, b)

Both a and b are related to the UA(1) anomaly!
−→ without anomaly the no. of relevant directions is 1 !

Gergely Fejős Second order chiral phase transition in three flavor QCD?



Fixed points and stability

If the UA(1) symmetry is recovered at Tc , the transition is of
second order!

Temperature eigenvalue leads to ν ≈ 0.83
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Fixed points and stability

Lessons from the ε-expansion:

−→ if the UA(1) symmetry is recovered at Tc :
aaaafirst order transition for Nf = 2, 3
−→ if the anomaly is present at Tc :
aaaasecond order for Nf = 2, first order for Nf = 3

Lessons from the FRG directly in d = 3 for Nf = 3:

−→ if the UA(1) symmetry is recovered at Tc :
aaaasecond order
−→ if the anomaly is present at Tc :
aaaafirst order

Increasing evidence of a second order transition for Nf = 3:
−→ F. Cuteri, O. Philipsen, A. Sciarra, JHEP 11, 141 (2021)
−→ L. Dini et al., Phys. Rev. D105, 034510 (2022)

If the transition is of second order, RG hints that the UA(1)
axial symmetry is recovered at Tc !
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Summary

Order of the chiral transition for Nf = 3 flavors
−→ common wisdom: first order irrespectively of the anomaly
−→ based on perturbation theory, ε expansion of RG flows

Functional Renormalization Group
−→ RG flows can be extracted directly in d = 3
−→ optimization of the RG is important
−→ LPA approximation

Reanalysis of the Ginzburg–Landau theory
−→ in d = 3 there are 9 renormalizable operators
−→ 2 new fixed points in the system
−→ without the anomaly, one of them describes a
aaaasecond order transition

Questions to be asked:
−→ transition order for Nf 6= 3 ?
−→ improvement of the RG truncation?
aaaa(wavefunction renormalization, higher derivative terms)
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