Second order chiral phase transition in three flavor QCD?

Gergely Fejős

Eötvös University Budapest Institute of Physics

Strong- and Electroweak Matter Conference June 21, 2022

Outline

Introduction

Ginzburg-Landau analysis of the chiral transition

Functional Renormalization Group

Fixed points and stability

Summary

Introduction

QCD Lagrangian:

$$\mathcal{L} = -rac{1}{4} {\it G}^{a}_{\mu
u} {\it G}^{\mu
u a} + ar{q}_{i} ig(i \gamma^{\mu} (D_{\mu})_{ij} - m \delta_{ij} ig) q_{j}$$

- \longrightarrow *SU*(3) gauge symmetry
- $\longrightarrow U_L(N_f) \times U_R(N_f)$ global (approx.) chiral symmetry
- \longrightarrow anomalous breaking of $U_A(1)$ axial symmetry
- At low temperatures: spontaneous breaking $SU_{\ell}(N_f) \times SU_{R}(N_f) \longrightarrow SU_{V}(N_f)$

Introduction

QCD Lagrangian:

$$\mathcal{L} = -rac{1}{4} G^{a}_{\mu
u} G^{\mu
u a} + ar{q}_i ig(i \gamma^{\mu} (D_{\mu})_{ij} - m \delta_{ij} ig) q_j$$

- \longrightarrow *SU*(3) gauge symmetry
- $\longrightarrow U_L(N_f) \times U_R(N_f)$ global (approx.) chiral symmetry
- \longrightarrow anomalous breaking of $U_A(1)$ axial symmetry
- At low temperatures: spontaneous breaking $SU_L(N_f) \times SU_R(N_f) \longrightarrow SU_V(N_f)$
- Ginzburg-Landau paradigm for second order (or weakly first order) transitions:
 - i.) there exists a local order parameter Φ
 - ii.) the UV free energy can be expanded in terms of Φ
 - iii.) the free energy has to reflect all symmetries

- GL theory for the chiral transition:
 - \longrightarrow gauge degrees of freedom are integrated out
 - \longrightarrow the emerging order parameter (Φ) is a $N_f \times N_f$ matrix
 - \longrightarrow it reflects chiral symmetry: $\Phi \to L\Phi R^{\dagger}$
- The most general free energy functional (no anomaly):

$$\Gamma = \int_{x} \left[m^{2} \operatorname{Tr} (\Phi^{\dagger} \Phi) + g_{1} (\operatorname{Tr} (\Phi^{\dagger} \Phi))^{2} + g_{2} \operatorname{Tr} (\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi) + \dots \right]$$
$$+ \operatorname{Tr} (\partial_{i} \Phi^{\dagger} \partial_{i} \Phi) + \dots \right]$$

- Anomaly \to Kobayashi–Maskawa–'t Hooft determinant: $\sim \det \Phi^\dagger + \det \Phi$
- Expansion of the full free energy leads to incorrect conclusions
 - \longrightarrow at T_C long wavelength fluctuations are important
 - → renormalization group is needed

- Pisarski & Wilczek analysis of the Ginzburg-Landau theory 1:
 - \longrightarrow one-loop calculation of the β functions (no anomaly)
 - \longrightarrow counterterms for g_1 , g_2 :

$$\delta g_1, \delta g_2 \sim$$

• Results (ϵ expansion, $\epsilon = 4 - d$):

$$\beta_{g_1} = -\epsilon g_1 + \frac{N_f^2 + 4}{4\pi^2} g_1^2 + \frac{N_f}{\pi^2} g_1 g_2 + \frac{3g_2^2}{4\pi^2}$$

$$\beta_{g_2} = -\epsilon g_2 + \frac{3}{2\pi^2} g_1 g_2 + \frac{N_f}{2\pi^2} g_2^2$$

- No infrared stable fixed point if $N_f > \sqrt{3}$ ⇒ 2nd order transition cannot occur!
- Inclusion of the anomaly:

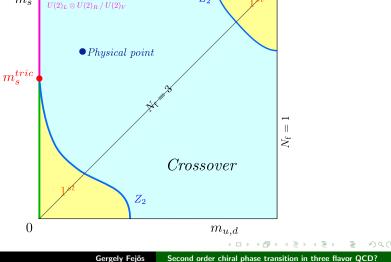
 $\longrightarrow N_f = 2$: second order transition with O(4) exponents

 $\longrightarrow N_f = 3$: first order transition

¹R. D. Pisarski and F. Wilczek, Phys. Rev. D**29**, 338 (1984)

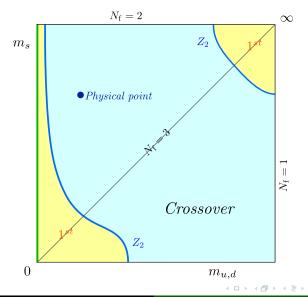
 $N_{\rm f} = 2$

Columbia plot with anomaly: [figure taken from F. Cuteri et. al, JHEP11, 141 (2021)]



 ∞

Columbia plot without anomaly: [figure taken from F. Cuteri et. al, JHEP11, 141 (2021)]



 $N_{\rm f} = 2$

New, conjectured Columbia plot: [figure taken from F. Cuteri et. al, JHEP11, 141 (2021)]



 Z_2

 ∞

- Potential problems with the Pisarski & Wilczek analysis:
 - \longrightarrow it uses the field theoretical RG \Longrightarrow valid only close to the Gaussian fixed point
 - \longrightarrow in d=3 there are more (perturbatively) renormalizable operators!
 - $\longrightarrow \epsilon$ expansion is not reliable
- Example: superconducting phase transition
 - \longrightarrow Abelian Higgs model: ϵ expansion predicts a first order transition
 - → Monte Carlo simulations showed that the transition can be of second order
 - \longrightarrow IR fixed point is inaccessible in the ϵ expansion ²
- Functional version of the Wilsonian Renormalization Group

²GF & T. Hatsuda, Phys. Rev. D**93**, 121701 (2016).

• FRG generalizes the idea of the Wilsonian RG: fluctuations are taken into account at the level of the quantum effective action

$$Z[J] = \int \mathcal{D}\phi e^{-(\mathcal{S}[\phi] + \int J\phi)} \quad \Rightarrow \quad \Gamma[\bar{\phi}] = -\log Z[J] - \int J\bar{\phi}$$

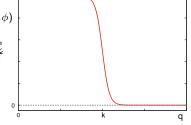
• FRG generalizes the idea of the Wilsonian RG: fluctuations are taken into account at the level of the quantum effective action

$$Z[J] = \int \mathcal{D}\phi e^{-(S[\phi] + \int J\phi)} \quad \Rightarrow \quad \Gamma[\bar{\phi}] = -\log Z[J] - \int J\bar{\phi}$$

• Introduction of a flow parameter k and inclusion of fluctuations for which $q \ge k$

$$Z_k[J] = \int \mathcal{D}\phi e^{-(\mathcal{S}[\phi] + \int J\phi + \frac{1}{2} \int \phi R_k \phi)}$$

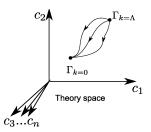
- → regulator: mom. dep. mass term suppressing low modes
- \longrightarrow take the $k \to 0$ limit



Scale-dependent effective action:

$$\Gamma_k[\bar{\phi}] = -\log Z_k[J] - \int J\bar{\phi} - \frac{1}{2} \int \bar{\phi} R_k \bar{\phi}$$

- $\longrightarrow k \approx \Lambda$: no fluctuations $\Rightarrow \Gamma_{k=\Lambda}[\bar{\phi}] = \mathcal{S}[\bar{\phi}]$
- $\longrightarrow k = 0$: all fluctuations $\Rightarrow \Gamma_{k=0}[\bar{\phi}] = \Gamma[\bar{\phi}]$
- The scale-dependent effective action interpolates between classical- and quantum effective actions
- The trajectory depends on R_k but the endpoint does not
- Choice of $R_k \leftrightarrow$ choice of scheme



 Flow of the effective action is described by the Wetterich equation:

$$\partial_k \Gamma_k = \frac{1}{2} \int_q \int_p \operatorname{Tr} \left[\partial_k R_k(q, p) (\Gamma_k^{(2)} + R_k)^{-1}(p, q) \right] = \frac{1}{2}$$

 Flow of the effective action is described by the Wetterich equation:

$$\partial_k \Gamma_k = \frac{1}{2} \int_q \int_p \operatorname{Tr} \left[\partial_k R_k(q, p) (\Gamma_k^{(2)} + R_k)^{-1}(p, q) \right] = \frac{1}{2}$$

Local potential approximation (LPA):

$$\Gamma_k[\bar{\phi}] = \int_x \left(\frac{Z_k}{2} \partial_i \bar{\phi} \partial_i \bar{\phi} + V_k(\bar{\phi}) \right)$$

- → leading order of the derivative expansion
- \longrightarrow equivalent statement: momentum dependence only in $\Gamma_k^{(2)}$

 Flow of the effective action is described by the Wetterich equation:

$$\partial_k \Gamma_k = \frac{1}{2} \int_q \int_p \operatorname{Tr} \left[\partial_k R_k(q, p) (\Gamma_k^{(2)} + R_k)^{-1}(p, q) \right] = \frac{1}{2}$$

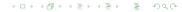
Local potential approximation (LPA):

$$\Gamma_k[\bar{\phi}] = \int_X \left(\frac{Z_k}{2} \partial_i \bar{\phi} \partial_i \bar{\phi} + V_k(\bar{\phi}) \right)$$

- → leading order of the derivative expansion
- \longrightarrow equivalent statement: momentum dependence only in $\Gamma_k^{(2)}$
- Optimal flow equation for the effective potential $(Z_k \equiv 1)$:

$$R_k(q,p) = (k^2 - q^2)\Theta(k^2 - q^2)\delta(p+q)$$

 $\partial_k V_k = \frac{k^4}{6\pi^2} \text{Tr}(k^2 + V_k^{(2)})^{-1}$



- How to build up the most general Ginzburg–Landau potential for three flavors in d = 3 in terms of <u>renormalizable</u> operators?
- Independent invariant tensors are needed:

$$I_1 = \operatorname{Tr}(\Phi^{\dagger}\Phi), \quad I_2 = \operatorname{Tr}(\Phi^{\dagger}\Phi - \operatorname{Tr}(\Phi^{\dagger}\Phi)/3)^2$$

 $I_3 = \operatorname{Tr}(\Phi^{\dagger}\Phi - \operatorname{Tr}(\Phi^{\dagger}\Phi)/3)^3$

 $\longrightarrow I_4, I_5, \dots$ are not independent

- How to build up the most general Ginzburg–Landau potential for three flavors in d=3 in terms of <u>renormalizable</u> operators?
- Independent invariant tensors are needed:

$$\begin{array}{lcl} \emph{I}_1 & = & \operatorname{Tr}\left(\Phi^\dagger\Phi\right), & \emph{I}_2 & = & \operatorname{Tr}\left(\Phi^\dagger\Phi - & \operatorname{Tr}\left(\Phi^\dagger\Phi\right)/3\right)^2 \\ \emph{I}_3 & = & \operatorname{Tr}\left(\Phi^\dagger\Phi - & \operatorname{Tr}\left(\Phi^\dagger\Phi\right)/3\right)^3 \end{array}$$

- \longrightarrow I_4 , I_5 , ... are not independent
- $U_A(1)$ breaking terms:

$$I_{\text{det}} = \det \Phi^{\dagger} + \det \Phi, \quad \tilde{I}_{\text{det}} = \det \Phi^{\dagger} - \det \Phi$$

- $\longrightarrow \tilde{l}_{\text{det}}^2$ could work but it is not independent
- $\longrightarrow \tilde{l}_{det}^2 = l_{det}^2 + 4l_1^3/27 2l_1l_2/3 + 4l_3/3$
- $\longrightarrow \det \Phi^{\dagger} \cdot \det \Phi = (I_{\det}^2 \widetilde{I}_{\det}^2)/4$

• The most general Ginburg–Landau potential (9 couplings!):

$$V_{k}[\Phi] = m_{k}^{2} I_{1} + a_{k} I_{\text{det}} + g_{1,k} I_{1}^{2} + g_{2,k} I_{2} + b_{k} I_{1} I_{\text{det}} + \lambda_{1,k} I_{1}^{3} + \lambda_{2,k} I_{1} I_{2} + a_{2,k} I_{\text{det}}^{2} + g_{3,k} I_{3} + \mathcal{O}(\phi^{7})$$

• The most general Ginburg–Landau potential (9 couplings!):

$$V_{k}[\Phi] = m_{k}^{2} I_{1} + a_{k} I_{\text{det}} + g_{1,k} I_{1}^{2} + g_{2,k} I_{2} + b_{k} I_{1} I_{\text{det}} + \lambda_{1,k} I_{1}^{3} + \lambda_{2,k} I_{1} I_{2} + a_{2,k} I_{\text{det}}^{2} + g_{3,k} I_{3} + \mathcal{O}(\phi^{7})$$

- Optimized flow: $\partial_k V_k = \frac{k^4}{6\pi^2} \operatorname{Tr} (k^2 + V_k^{(2)})^{-1}$
- Left hand side:

$$\begin{aligned} \partial_k V_k &= \partial_k m_k^2 I_1 + \partial_k a_k I_{\text{det}} + \partial_k g_{1,k} I_1^2 + \partial_k g_{2,k} I_2 \\ &+ \partial_k b_k I_1 I_{\text{det}} + \partial_k \lambda_{1,k} I_1^3 + \partial_k \lambda_{2,k} I_1 I_2 + \partial_k a_{2,k} I_{\text{det}}^2 + \partial_k g_{3,k} I_3 \end{aligned}$$

- Right hand side? Need to compatible with the lhs via $V_k^{(2)}$
 - $\longrightarrow \Phi = \sum_{a=0}^{8} \phi^a T^a \equiv \sum_{a=0}^{8} (s^a + i\pi^a) T^a$
 - $\longrightarrow V_k^{(2)}$ depends on the fields, not invariants!
 - $\longrightarrow [k^2 + V_k^{(2)}]$: 18 × 18 matrix, in practice cannot be inverted

The most general Ginburg–Landau potential (9 couplings!):

$$V_{k}[\Phi] = m_{k}^{2} I_{1} + a_{k} I_{\text{det}} + g_{1,k} I_{1}^{2} + g_{2,k} I_{2} + b_{k} I_{1} I_{\text{det}} + \lambda_{1,k} I_{1}^{3} + \lambda_{2,k} I_{1} I_{2} + a_{2,k} I_{\text{det}}^{2} + g_{3,k} I_{3} + \mathcal{O}(\phi^{7})$$

- Trick: we need flows of couplings, Φ is not important!
 - \longrightarrow free to choose Φ at each level of the expansion
 - \longrightarrow requirement: $[k^2 + V_k^{(2)}]$ is easily invertable
 - \rightarrow e.g. $\Phi = s_0 T^0 \Rightarrow I_1 = s_0^2/2$, $I_{\text{det}} = s_0^3/3\sqrt{6}$, ...

The most general Ginburg–Landau potential (9 couplings!):

$$V_{k}[\Phi] = m_{k}^{2} I_{1} + a_{k} I_{\text{det}} + g_{1,k} I_{1}^{2} + g_{2,k} I_{2} + b_{k} I_{1} I_{\text{det}} + \lambda_{1,k} I_{1}^{3} + \lambda_{2,k} I_{1} I_{2} + a_{2,k} I_{\text{det}}^{2} + g_{3,k} I_{3} + \mathcal{O}(\phi^{7})$$

- Trick: we need flows of couplings, Φ is not important!
 - \longrightarrow free to choose Φ at each level of the expansion
 - \longrightarrow requirement: $[k^2 + V_k^{(2)}]$ is easily invertable
 - \longrightarrow e.g. $\Phi = s_0 T^0 \Rightarrow I_1 = s_0^2/2$, $I_{\text{det}} = s_0^3/3\sqrt{6}$, ...
- Problem: invariants need to be disentangled from each order
 - $\longrightarrow \mathcal{O}(\phi^2)$: 1 invariant I_1
 - $\longrightarrow \mathcal{O}(\phi^3)$: 1 invariant I_{det}
 - $\longrightarrow \mathcal{O}(\phi^4)$: 2 invariants l_1^2, l_2
 - $\longrightarrow \mathcal{O}(\phi^5)$: 1 invariants I_1I_{det}
 - $\longrightarrow \mathcal{O}(\phi^6)$: 4 invariants $l_1^3, l_1 l_2, l_{\text{det}}^2, l_3$

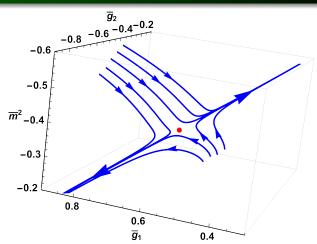
$$\begin{split} \beta_{m^2} & \equiv k \partial_k m_k^2 = -2 m_k^2 - \frac{4}{9 \pi^2} \frac{15 \eta_{L^4} + 4 \eta_{2/k}}{9 \pi^2} + \frac{4}{3 \pi^2} \frac{a_k^2}{(1 + m_k^2)^3}, \\ \beta_0 & \equiv k \partial_k a_k = -\frac{3 \bar{a}_L}{2 u} + \frac{4}{\pi^2} \frac{1}{(1 + m_k^2)^2} + \frac{4}{3 \pi^2} \frac{a_k^2}{(1 + m_k^2)^3}, \\ \beta_9 & \equiv k \partial_k \bar{a}_{1,k} = -\bar{g}_{1,k} - \frac{1}{9 \pi^2} \frac{2 \eta_{2,k} + 9 \bar{g}_{1,k} + 16 \eta_{2,k}}{9 \pi^2} + \frac{4}{27 \pi^2} \frac{2^2 l \bar{a}_k \bar{b}_k + 117 \bar{g}_{1,k}^2 + 48 \bar{g}_{1,k} \bar{g}_{2,k} + 16 \bar{g}_{2,k}^2}{(1 + m_k^2)^3} \\ & - \frac{16}{9 \pi^2} \frac{\bar{a}_k^2}{(1 + m_k^2)^3} + \frac{8}{9 \pi^2} \frac{\bar{a}_k^4}{(1 + m_k^2)^3}, \\ \beta_{22} & \equiv k \partial_k \bar{g}_{2,k} = -\bar{g}_{2,k} + \frac{1}{3 \bar{a}_{2,k}} \frac{\bar{a}_{2,k} - 13 \lambda_{2,k}}{(1 + m_k^2)^2} - \frac{4}{3 \pi^2} \frac{\bar{a}_k \bar{b}_k - 6 g_{1,k} g_{2,k} - 4 g_{2,k}^2}{(1 + m_k^2)^3} + \frac{4}{3 \pi^2} \frac{\bar{a}_k^2}{(1 + m_k^2)^3}, \\ \beta_{22} & \equiv k \partial_k \bar{g}_{2,k} = -\bar{g}_{2,k} + \frac{1}{3 \bar{a}_{2,k}} \frac{\bar{a}_{2,k} - 13 \lambda_{2,k}}{(1 + m_k^2)^3} - \frac{4}{3 \pi^2} \frac{\bar{a}_k \bar{b}_k - 6 g_{1,k} g_{2,k} - 4 g_{2,k}^2}{(1 + m_k^2)^3} + \frac{4}{3 \pi^2} \frac{\bar{a}_k^2}{(1 + m_k^2)^3}, \\ \beta_5 & \equiv k \partial_k \bar{b}_k & = -\frac{\bar{b}_k}{2} + \frac{4}{9 \pi^2} \frac{\bar{a}_k^2}{(1 + m_k^2)^3} + \frac{4}{3 \pi^2} \frac{\bar{a}_k^2}{(1 + m_k^2)^3}, \\ + \frac{2}{3 \pi^2} \frac{\bar{a}_k^2}{(1 + m_k^2)^3} + \frac{3}{3 \pi^2} \frac{\bar{a}_k^2}{(1 + m_k^2)^3} + \frac{3}{9 \pi^2} \frac{\bar{a}_k^2}{(1 + m_k^2)^3}, \\ \beta_{31} & \equiv k \partial_k \bar{b}_k & = -\frac{\bar{b}_k}{2} + \frac{9}{9 \pi^2} \frac{\bar{a}_k}{(1 + m_k^2)^4} + \frac{3}{9 \pi^2} \frac{\bar{a}_k^2}{(1 + m_k^2)^3}, \\ \beta_{31} & \equiv k \partial_k \bar{b}_k & = \frac{8}{3 \pi^2} \frac{\bar{a}_k^2}{3 \pi_2 k g_{1,k}^2 + 24 g_{1,k}} (\bar{a}_{1,k} + \lambda_{2,k}) + 4 g_{2,k} (9 \lambda_{1,k} + 4 \lambda_{2,k})}{(1 + m_k^2)^3}, \\ \beta_{32} & = \frac{4}{3 \pi^2} \frac{7}{(1 + m_k^2)^3} + \frac{3}{3 \pi^2 k g_{1,k}^2 + 24 g_{1,k}} (\bar{a}_{1,k} + \lambda_{2,k}) + 4 g_{2,k} (9 \lambda_{1,k} + 4 \lambda_{2,k})}{(1 + m_k^2)^3}, \\ \beta_{32} & = k \partial_k \bar{b}_{2,k} & = \frac{2}{9 \pi^2} \frac{2}{3 \pi^2 k k} + 17 g_{1,k}^2 + 3 g_{1,k} g_{2,k} + 7 g_{1,k} g_{2,k}^2 + 7 g_{1,k} g_{2,k}^2 + 9 g_{2,k}^2 (2 \pi_{2,k} + 45 \bar{b}_{1,k} + 4 \bar{b}_{2,k})}{(1 + m_k^2)^3}, \\ \beta_{32} & = k \partial_k \bar{b}_{2,k} & = \frac{2}{9 \pi^2} \frac{2}{2 \pi^2 k} (2 g_{3,k} + 5 g_{2,k} k) - 8 g_{2,k} g_{3,k}^2 + 2 g_{2,k} g_{3,k}^2 +$$

- Fixed points: $\beta_i = 0 \ \forall i$
- First step: solve for marginal couplings $\longrightarrow \beta_{\lambda_1} = \beta_{\lambda_2} = \beta_{g_2} = \beta_{g_3} \equiv 0$ $\longrightarrow \lambda_1, \lambda_2, a_2, g_3$ are plugged into the remaining β functions
- Second step: solve for relevant couplings
- Third step: check stability matrix $\partial \beta_i / \partial \omega_j$ $(\{\omega_j\} : m^2, g_1, g_2, a, b)$

m^2	g ₁	g 2	а	Ь	# of RD
0	0	0	0	0	5
-0.31496	0.43763	0	0	0	3
-0.38262	0.59726	-0.62042	0	0	2
-0.01786	0.09163	-0.14148	-0.11900	0.39087	4

m^2	g_1	g_2	a	Ь	# of RD
0	0	0	0	0	5
-0.31496	0.43763	0	0	0	3
-0.38262	0.59726	-0.62042	0	0	2
-0.01786	0.09163	-0.14148	-0.11900	0.39087	4

- No fixed point with one relevant direction
 - → first order transition?
- BUT the third one has a block diagonal stability matrix:
 - $\longrightarrow (m^2, g_1, g_2) \oplus (a, b)$
- Both a and b are related to the $U_A(1)$ anomaly!
 - → without anomaly the no. of relevant directions is 1!



- If the $U_A(1)$ symmetry is recovered at T_c , the transition is of second order!
- Temperature eigenvalue leads to $\nu \approx 0.83$

- Lessons from the ϵ -expansion:
 - \longrightarrow if the $U_A(1)$ symmetry is recovered at T_c : first order transition for $N_f = 2,3$
 - \longrightarrow if the anomaly is present at T_c : second order for $N_f = 2$, first order for $N_f = 3$

- Lessons from the ϵ -expansion:
 - \longrightarrow if the $U_A(1)$ symmetry is recovered at T_c : first order transition for $N_f = 2,3$
 - \longrightarrow if the anomaly is present at T_c : second order for $N_f = 2$, first order for $N_f = 3$
- Lessons from the FRG directly in d = 3 for $N_f = 3$:
 - \longrightarrow if the $U_A(1)$ symmetry is recovered at T_c : second order
 - \longrightarrow if the anomaly is present at T_c : first order

- Lessons from the ϵ -expansion:
 - \longrightarrow if the $U_A(1)$ symmetry is recovered at T_c : first order transition for $N_f = 2,3$
 - \longrightarrow if the anomaly is present at T_c : second order for $N_f = 2$, first order for $N_f = 3$
- Lessons from the FRG directly in d = 3 for $N_f = 3$:
 - \longrightarrow if the $U_A(1)$ symmetry is recovered at T_c : second order
 - \longrightarrow if the anomaly is present at T_c : first order
- Increasing evidence of a second order transition for $N_f = 3$:
 - → F. Cuteri, O. Philipsen, A. Sciarra, JHEP 11, 141 (2021)
 - → L. Dini et al., Phys. Rev. D**105**, 034510 (2022)
- If the transition is of second order, RG hints that the $U_A(1)$ axial symmetry is recovered at T_c !

Summary

- Order of the chiral transition for $N_f = 3$ flavors
 - → common wisdom: first order irrespectively of the anomaly
 - \longrightarrow based on perturbation theory, ϵ expansion of RG flows
- Functional Renormalization Group
 - \longrightarrow RG flows can be extracted directly in d=3
 - → optimization of the RG is important
 - → LPA approximation
- Reanalysis of the Ginzburg-Landau theory
 - \longrightarrow in d = 3 there are 9 renormalizable operators
 - \longrightarrow 2 new fixed points in the system
 - without the anomaly, one of them describes a second order transition

Summary

- Order of the chiral transition for $N_f = 3$ flavors
 - → common wisdom: first order irrespectively of the anomaly
 - \longrightarrow based on perturbation theory, ϵ expansion of RG flows
- Functional Renormalization Group
 - \longrightarrow RG flows can be extracted directly in d=3
 - → optimization of the RG is important
 - → LPA approximation
- Reanalysis of the Ginzburg-Landau theory
 - \longrightarrow in d=3 there are 9 renormalizable operators
 - \longrightarrow 2 new fixed points in the system
 - without the anomaly, one of them describes a second order transition
- Questions to be asked:
 - \longrightarrow transition order for $N_f \neq 3$?
 - improvement of the RG truncation? (wavefunction renormalization, higher derivative terms)

