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What does it look like in this plane?



The B-µ plane

▶ Chiral anomaly induces a coupling ∝ µB∇π0 1

▶ The ground state at µ ≲ 1GeV and large B is an inhomogeneous
phase of neutral pions (π0) called the Chiral Soliton Lattice (CSL)2

▶ At B ≥ Bc2 the CSL becomes unstable to charged pion fluctuations
1D. T. Son and M. A. Stephanov, Phys. Rev. D 77, 2008 (014021)
2T. Brauner and N. Yamamoto, JHEP, 132, 2017(04)



Superconductivity refresher
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▶ The charged pion instability is reminiscent of the Vortex
Lattice-Normal transition, but inverted



Lagrangian

We work in Chiral Perturbation Theory with two-flavours, starting from
the Lagrangian

L = Lπ +LEM+LWZW ,
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Lπ =
f 2π
4
Tr
[
∇µΣ

†∇µΣ
]
+

m2
πf

2
π

4
Tr
[
Σ+ Σ†

]
,

LEM = −1

4
FµνF

µν ,

and the chiral anomaly is incoporated via the Wess-Zumino-Witten3 term
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3J. Wess and B. Zumino, Phys. Lett. B 37, 1971 & E. Witten, Nucl. Phys. B 223,
1983



Free energy

From the Lagrangian we obtain the free energy

F =
1

V

∫
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where φ (complex scalar field) and α (real scalar field) parameterise the
pion fields, and the magnetic field B = ∇× A.



Equations of motion

From the Lagrangian/Free Energy we obtain the equations of motion for
φ, A and α

0 =
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respectively, where

D ≡ ∇2 − i∇ · (eA +∇α)− 2i (eA +∇α) · ∇ − (eA +∇α)2

+(∇α)2 −m2
π cosα .



Applying Abrikosov’s expansion near Bc2

▶ To find solutions analytically near Bc2, we follow Abrikosov’s original
paper4 and expand in the small parameter ϵ ∼

√
B − Bc2 like so

φ = φ0 + δφ+ . . . , A = A0 + δA + . . . , α = α0 + δα+ . . . ,

where

A0, α0 ∼ ϵ0 , φ0 ∼ ϵ1 , δA, δα ∼ ϵ2 , δφ ∼ ϵ3

▶ We expand the free energy and equations of motion (with
B0 = ∇× A0 and δB = ∇× δA)

▶ For simplicity, we solve the equations of motion in the chiral limit
(i.e. mπ = 0)

4A.A. Abrikosov, JETP, 5, p.1174, 1957(06)



Solutions of the expanded equations of motion

▶ The solutions at ϵ0 are

B0 = Bc2êz , α0(z) =
eµ

4π2f 2π
Bc2z

▶ The equation for φ0 is the same as the Schrödinger equation for a
particle in a magnetic field with the usual Landau level result5

▶ Choosing the ground state solution,

φ0(x , y) =
∞∑

n=−∞
Cne

inqye
− eBc2

2
(x− nq

eBc2
)2
,

where relations between different Cn determine the configuration of
the lattice

5See M. Tinkham, Introduction to Superconductivity. Dover Publications, New
York, 2004



Solutions of expanded equations of motion

▶ The correction to the magnetic field becomes

δB(x , y) =
[
⟨B⟩ − Bc2 + e

(
⟨|φ0(x , y)|2⟩ − |φ0(x , y)|2

)]
êz ,

where we’ve introduced a spatial average defined as

⟨f (x , y , z)⟩ = 1

V

∫
f (x , y , z)dV ,

for a function f (x , y , z) over the volume V

▶ The other equation at order ϵ2 is solved by

δα(z) =
eµ

4π2f 2π
(⟨B⟩ − Bc2) z



Free energy result

We do not solve the δφ equation but use it instead to show that

e⟨|φ0|2⟩ =
⟨B⟩ − Bc2

(2κ2 − 1)β + 1
, where β =

⟨|φ0|4⟩
⟨|φ0|2⟩2

,

and 2κ2 = Bc2/ef
2
π .

With F expanded to fourth order, we obtain

∆F = −1

2

(⟨B⟩ − Bc2)
2

(2κ2 − 1)β + 1
,

which is the difference in free energy between our constructed phase and
the “CSL” phase.

We have analytically constructed a phase which is preferred above Bc2!



β and lattice configurations
▶ To minimise F we must minimise β which can vary depending on

the periodicity condition Cn = Cn+N , where N is an integer
▶ To explore a continuum of geometries6, we set N = 2 and

C0 = ±iC1

Figure: R = q2/π. Left: Red dots correspond to contour plots on the right.
Right: |φ0|2 in the x-y plane. Dark regions correspond to vortices.

6W.H. Kleiner, L.M. Roth and S.H. Autler, Phys. Rev. 133 5A A1226, 1964



Charged pion condensate and baryon number density

Figure: Charged pion vortex lattice (left) and local baryon number denisty
(right).

A superconducting crystal with “baryon tubes”!



Summary

▶ The preferred phase above Bc2 is a charged pion vortex lattice
coexisting with a neutral pion superflow

▶ Further analysis of β parameter reveals the most preferred
configuration of vortices is hexagonal

▶ The baryon number density is not only non-zero but also
inhomogeneous, exhibiting the periodic hexagonal configuration
of the charged pion vortex lattice

▶ Our phase is a 2D superconducting baryon crystal



Outlook

▶ In the more physical scenario where mπ ̸= 0, a 3D crystalline
structure is expected

▶ Our calculation is confined near Bc2 - what does the lattice look like
away from the transition?

▶ At µ ∼ 1GeV actual baryons are expected to emerge, thus their
inclusion would lead to a more realistic calculation

▶ The CSL7 and charged pion superconductivity8 also emerge in the
B-µI plane - can we extend our results to this plane?9

7T. Brauner, G. Filios, and H. Kolešová, JHEP 12, p. 29, 2019
8P. Adhikari, T. D. Cohen, and J. Sakowitz, Phys. Rev. C 91, 2015 (4)
9M. S. Grønli and T. Brauner, Eur. Phys. J. C 82, 2022(4)


