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Motivation

• Matter produced in heavy-ion collisions involves both
perturbative and non-perturbative degrees of freedom
simultaneously and their dynamics cannot be factorized
e.g. Jets travelling through quark-gluon plasma

• Most existing approaches work solely in either perturbative
(weakly coupled) or non-perturbative (strongly coupled)
frameworks

• Semi-holography describes both perturbative and
non-perturbative dof in single framework
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• To be consistent with Wilsonian RG, non-perturbative
dynamics at a given energy scale should depend on
perturbative dynamics only upto that energy scale

• We should be able to obtain effective macroscopic description
of the combined system from coarse-grained descriptions of
the sub-sectors

• This can be achieved by using democratic couplings
arXiv: 1701.01229

• Only metric couplings are relevant for fluids
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Semi-holography

• Full system lives in actual background metric:

g
(B)
µν

• first sub-sector lives in effective metric:

gµν [t̃
γδ]

• second sub-sector lives in effective metric:

g̃µν [t
αβ]

• subsector Ward Identities: ∇µt
µ
ν = 0, ∇̃µt̃

µ
ν = 0
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Metric Coupling Equations

gµν = g (B)
µν + γg (B)

µα t̃αβg
(B)
βν

√
−g̃√

−g (B)

+ γ′g (B)
µν t̃αβg

(B)
αβ

√
−g̃√

−g (B)

g̃µν = g (B)
µν + γg (B)

µα tαβg
(B)
βν

√
−g√

−g (B)

+ γ′g (B)
µν tαβg

(B)
αβ

√
−g√

−g (B)
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The individual ward identities ∇µt
µ
ν = 0, ∇̃µt̃

µ
ν = 0

and the coupling equations together imply ∇(B)
µ Tµ

ν = 0,
where

Tµ
ν =

1

2

(
(tµν + t ν

µ )

√
−g√

−g (B)
+ (t̃µν + t̃ ν

µ )

√
−g̃√

−g (B)

)
+∆Kδ ν

µ

=: Tµ
1 ν(E1,P1) + Tµ

2 ν(E2,P2) + Tµ
ν,int

with

∆K =− γ

2

(
tρα

√
−g√

−g (B)

)
g
(B)
αβ

(
t̃βσ

√
−g̃√

−g (B)

)
g (B)
σρ

− γ′

2

(
tαβ

√
−g√

−g (B)

)
g
(B)
αβ

(
t̃σρ

√
−g̃√

−g (B)

)
g (B)
σρ



7/32

• Full stress tensor is a polynomial of sub-system em-tensors

• Phenomenological description of full system can be obtained
from hydrodynamic descriptions of the subsectors
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Hydrodynamic Attractor with two fluids

• We study hydrodynamic attractors1 in this framework

• Hydrodynamic Attractor is curve in phase space of the physical
system to which all the initial conditions converge at late time

• We couple two MIS fluids with different transport coefficients
using metric coupling and this system has two dimensional
attractor surface

• the full system behaves as a single fluid

• universality of bottom-up thermalization

• Hydrodynamization times show interesting features

1arXiv: 2109.15081
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The background metric is flat Minkowski metric in Bjorken flow

g (B)
µν = diag(−1, 1, 1, τ2)

boost invariant ansatz for the effective metrics of subsectors:

gµν = diag(−a2, b2, b2, c2)

g̃µν = diag(−ã2, b̃2, b̃2, c̃2)

a, b, c , ã, b̃, c̃ are functions of τ .
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Assume conformal equations of state for both the subsectors:

ϵ = 3P, ϵ̃ = 3P̃

stress tensors of subsectors:

tµν = diag (−ϵ,P,P,P) + πµ
ν

t̃µν = diag
(
−ϵ̃, P̃, P̃, P̃

)
+ π̃µ

ν

πµ
ν = diag

(
0,

ϕ

2
,
ϕ

2
,−ϕ

)
,

π̃µ
ν = diag

(
0,

ϕ̃

2
,
ϕ̃

2
,−ϕ̃

)
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EOMs for two subsectors

∇µt
µν = 0,

(
τπu

α∇α + 1
)
πµν = −ησµν

∇̃µt̃
µν = 0,

(
τ̃πũ

α∇̃α + 1
)
π̃µν = −η̃σ̃µν

We parametrize transport coefficients as follows

Cη =
η

s
, Cτ = τπϵ

1/4

C̃η =
η̃

s̃
, C̃τ = τ̃π ϵ̃

1/4

Cη, Cτ , C̃η, C̃τ are all dimensionless parameters which are given by
the underlying microscopic theory
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Strongly coupled (non-perturbative) sector (N = 4 SYM values)

C̃τ =
2− log(2)

2π
, C̃η =

1

4π

Weakly coupled (perturbative) sector

Cτ = 5Cη, Cη = 10C̃η

dimensionless anisotropy variable: χ = ϕ
ϵ+P , χ̃ = ϕ̃

ϵ̃+P̃
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At τ → 0

χ→

√
Cη

Cτ
≈ 0.45 (weakly coupled/perturbative)

χ̃→

√
C̃η

C̃τ

≈ 0.62 (strongly coupled/non-perturbative)
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Figure: Attractor solutions , thin lines are neighbouring trajectories.
Less viscous system, More viscous system and Full system

Toshali Mitra (IMSc) Discussion Meeting 2020-ICTS October 5, 2020 25 / 41

strongly coupled, weakly coupled, total system
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Bottom-up thermalization

At early times, energy in the weakly coupled sector is always
greater than the energy in the strongly coupled sector.

At early times (near τ = 0), the subsystem energy densities have
the following behaviour:

E1 := (ab2c/τ)ϵ ∼ τ
4(
√

Cη
Cτ

−1)/3
, E2 := (ãb̃2c̃/τ)ϵ̃ ∼ τ

4(2

√
C̃η

C̃τ
−
√

Cη
Cτ

−1)/3

E2/E1 ∼ τ
8(

√
C̃η

C̃τ
−
√

Cη
Cτ

)/3

√
C̃η

C̃τ

>

√
Cη

Cτ
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Single fluid with effective η/s

• At late times, variables ϵ, ϕ, ϵ̃, ϕ̃ admit hydrodynamic
expansions involving two parameters α := limτ→∞ϵτ4/3 and
β := limτ→∞ϵ̃τ4/3.

• The two sub-sectors do not equilibrate but the full system can
be described as a single fluid

(η
s

)full
= C eff

η := lim
τ→∞

H(τ)

C eff
η =

Cηα
4/3 + C̃ηβ

4/3

(α+ β)4/3

H(τ) =
Cηϵ

4/3 + C̃η ϵ̃
4/3

(ϵ+ ϵ̃)4/3
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Interaction Measure and Effective Shear Viscosity
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Hydrodynamization

• Anisotropy, A = P⊥−PL
P ∼ 6χ

• Hydrodynamizaton criterion: |∆PL|
P := |ϕ−ϕ1st |

P < 0.1, τ > τhd
• If more energy in perturbative sector at initial time, then
universality in perturbative sector and non-perturbative sector
is non-universal, vice versa if more energy in the
non-perturbative sector at initial time

• Hydrodynamization time vs total energy density plot shows
conformality at intermediate energies
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Hydrodynamization time - perturbative sector

Hydrodynamization time v/s total energy density at hydrodynamization
time for various ratios (> 1) of initial energy densities for perturbative
sector
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Hydrodynamization time - non-perturbative sector

Hydrodynamization time v/s total energy density at hydrodynamization
time for various ratios (> 1) of initial energy densities for
non-perturbative sector
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hydrodynamization time in non-perturbative sector v/s total energy
density at initial time for various ratios (< 1) of initial energy densities
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hydrodynamization time in perturbative sector v/s total energy density at
initial time for various ratios (< 1) of initial energy densities
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Spectral Form Factor 2

2arXiv: 2012.01436
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Entropy density

Total entropy density at final time v/s total energy density at initial time
for various ratios (> 1) of initial energy densities
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Entropy density in perturbative sector at final time v/s total energy
density at initial time for various ratios (> 1) of initial energy densities
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Entropy density in non-perturbative sector at final time v/s total energy
density at initial time for various ratios (> 1) of initial energy densities
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Entropy density in perturbative sector at final time v/s total energy
density at initial time for various ratios (< 1) of initial energy densities
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Conclusions

• Hybrid two fluid model in combination with MIS equations
provides a model for non-equilibrium dynamics of two
component system with different amounts of self interactions

• Hybrid system exhibits a two dimensional attractor surface
ruled by curves. Any initial condition evolves to one of these
curves on the attractor surface.

• Bottom-up thermalization is universal as long as one of the
systems is weakly coupled and another is strongly coupled.

• At later times weakly coupled system dominates again as in
QGP to hadron gas crossover
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Conclusions

• Full system behaves as a single fluid at late times even though
the two subsectors never equilibrate. EoS and shear viscosity
of the full system are determined by the curve on the attractor
surface to which the system evolves at late time.

• Universality in perturbative (non-perturbative) sector,
non-perturbative (perturbative) sectors remembers initial
conditions if more energy in perturbative (non-perturbaive)
sector at initial time

• Our model is successful in capturing only certain features of
heavy ion collisions and open to further generalizations
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Attractor, σ̃ ≈ 0.62 (strongly coupled), σ ≈ 0.45 (weakly coupled)
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The equilibrium of the hybrid system is described by coupling two
perfect fluids. (J. High Energ. Phys. 2018, 54 (2018))
Extend this model to capture non-equilibrium dynamics
Describe each sub-sector by MIS theory (arXiv:2006.09383)

• In MIS theory, πµν is promoted to an independent dynamical
variable (on the same footing as E and uµ).

• πµν satisfies the following relaxation type equation:

πµν = −ησµν − τπu
α∇απ

µν

τπ is new transport coefficient called as relaxation time.

• Two sets of Equations of motion for the fluid:

∇µT
µν =0 Ward Identity

(1 + τπu
α∇α)π

µν =− ησµν MIS equation


