

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

THERMAL EMISSION OF GRAVITATIONAL WAVES FROM WEAK TO STRONG COUPLING

Lucía Castells-Tiestos

lucia.castells@icc.ub.edu

Based on 2202.05241 [hep-th] with Jorge Casalderrey-Solana

J. Ghiglieri et al, "Gravitational waves background from Standard Model Physics", JHEP (2020) A. Ringwald et al, "Gravitational waves as a Big Bang thermometer", JCAP (2021)

J. Ghiglieri et al, "Gravitational waves background from Standard Model Physics", JHEP (2020) A. Ringwald et al, "Gravitational waves as a Big Bang thermometer", JCAP (2021)

WHAT DO WE EXPECT FROM THIS BACKGROUND?

Expected behaviour

Energy density of gravitational waves from the primordial thermal plasma in the SM and two of its extensions: Neutrino Minimal SM (ν MSM) and SM-Axion-Seesaw-Higgs (SMASH)

Figures from A. Ringwald et al, "Gravitational waves as a Big Bang thermometer", JCAP (2021)

Expected behaviour

What if physics beyond the Standard Model is strongly-coupled?

Figures from A. Ringwald et al, "Gravitational waves as a Big Bang thermometer", JCAP (2021)

HOW DOES THE SIGNAL DEPEND ON THE COUPLING?

How does the peak of the spectrum change with coupling in the weak field limit?

Do we expect the peak of the spectrum to...

- 1. diverge at large coupling?
- 2. grow and converge?
- 3. grow until a maximum and decrease?

How does the peak of the spectrum change with coupling in the weak field limit?

Do we expect the peak of the spectrum to...

- 1. diverge at large coupling?
- 2. grow and converge?
- 3. grow until a maximum and decrease?

We want to compare the weaklycoupled and the strongly-coupled regimes **within the same theory.**

Candidate theory with which to access both two regimes:

 $\mathcal{N} = 4 \ SU(N_c)$ Supersymmetric Yang-Mills theory in the $N_c \to \infty$ limit and with respect to the 't Hooft coupling constant $\lambda \equiv g^2 N_c$

$$\mathcal{L}_{\text{SYM}} = \text{Tr}\left[-\frac{1}{2}G_{\mu\nu}^{2} + \left(D_{\mu}\Phi_{A}\right)^{2} + i\bar{\psi}_{i}\gamma^{\mu}D_{\mu}\psi_{i} - \frac{1}{2}g^{2}(i[\Phi_{A}, \Phi_{B}])^{2} - ig\bar{\psi}_{i}\left[\alpha_{ij}^{p}X_{p} + i\beta_{ij}^{q}\gamma_{5}Y_{q}, \psi_{j}\right]\right] + \mathcal{L}_{\text{gf}} + \mathcal{L}_{\text{gh}} + \Delta\mathcal{L}_{\text{SYM}}$$

Candidate theory with which to access both two regimes:

 $\mathcal{N} = 4 \ SU(N_c)$ Supersymmetric Yang-Mills theory in the $N_c \rightarrow \infty$ limit and with respect to the 't Hooft coupling constant $\lambda \equiv g^2 N_c$

$$\mathcal{L}_{\text{SYM}} = \text{Tr}\left[-\frac{1}{2}G_{\mu\nu}^{2} + \left(D_{\mu}\Phi_{A}\right)^{2} + i\bar{\psi}_{i}\gamma^{\mu}D_{\mu}\psi_{i} - \frac{1}{2}g^{2}(i[\Phi_{A}, \Phi_{B}])^{2}\right.\\ \left. -ig\bar{\psi}_{i}\left[\alpha_{ij}^{p}X_{p} + i\beta_{ij}^{q}\gamma_{5}Y_{q}, \psi_{j}\right]\right] + \mathcal{L}_{\text{gf}} + \mathcal{L}_{\text{gh}} + \Delta\mathcal{L}_{\text{SYM}}$$

 $\mathcal{N} = 4$ SYM allows us to bound the magnitude of the thermal spectrum by moving from $\lambda \to 0$ to $\lambda \to \infty$.

PRODUCTION RATE OF THERMAL GRAVITATIONAL WAVES

Gravitational waves from a static thermal source

Energy production rate of thermal gravitational radiation:

$$\frac{d\rho_{GW}}{dtd^3k} = \frac{4\pi G}{(2\pi)^3} \wedge_{ijmn} \int d^4x \, e^{i(\omega t - \mathbf{kx})} \langle T_{ij}(\mathbf{0}, \mathbf{0}) T_{mn}(t, \mathbf{x}) \rangle$$

under light-like condition $\omega = k$ and Λ_{ijmn} the projector onto spin-2 modes.

The energy density carried by thermal gravitational waves depends on the equilibrium correlator of the energymomentum tensor in field theory.

Gravitational waves from a static thermal source

Energy production rate of thermal gravitational radiation*:

$$\frac{d\rho_{GW}}{dtd^3k} = \frac{-8\pi G n_B(k)}{(2\pi)^3} \Lambda_{ijmn} \operatorname{Im} \left\langle T_{ij}(k) T_{mn}(-k) \right\rangle_R$$

under light-like condition $\omega = k$ and Λ_{ijmn} the projector onto spin-2 modes.

Computation of the correlator in $\mathcal{N} = 4$ SYM:

- Weak coupling limit $\lambda \rightarrow 0$: Perturbation theory
- Strong coupling limit $\lambda \rightarrow \infty$: Perturbation theory Holography

* Via KMS relations

THERMAL EMISSION RATE AT STRONG COUPLING

Gauge/gravity duality: AdS/CFT correspondence

Strongly-coupled, non-perturbative quantum field theories with conformal invariance

Holography

Weakly-coupled gravity theories with black hole horizons in asymptotically Anti de Sitter spacetime

J.M. Maldacena, "Adv. Theor. Math. Phys." 2 (1998), pp. 231-252.

Gauge/gravity duality: AdS/CFT correspondence

Strongly-coupled, non-perturbative quantum field theories with conformal invariance

Holography

Weakly-coupled gravity theories with black hole horizons in asymptotically Anti de Sitter spacetime

Gauge/gravity duality allows us to compute correlation functions in the field theory in terms of the gravity prescription.

J.M. Maldacena, "Adv. Theor. Math. Phys." 2 (1998), pp. 231-252.

Gauge/gravity duality: AdS/CFT correspondence

fGravitational fluctuations $h_{\mu\nu}$

Energy-momentum tensor $T_{\mu\nu}$ in the CFT

We need to consider fluctuations $h_{\mu\nu}$ over the gravitational background:

$$h_{\mu\nu}(t,x,u) = h_{\mu\nu}(u)e^{-ik(t-z)}$$

Restrict to the **spin-2** fluctuating field h_y^x subject to the infalling boundary condition.

J.M. Maldacena, "Adv. Theor. Math. Phys." 2 (1998), pp. 231-252.

Emission rate at strong coupling

Energy production rate emitted by strongly-coupled $\mathcal{N}=4$ SYM matter

THERMAL EMISSION RATE AT WEAK COUPLING

Perturbative analysis

Energy-momentum tensor correlation function from standard **perturbation theory**:

$$G_{xy;xy}^{<}(k) \equiv \int d^4x \, e^{i(kt - \mathbf{k}\mathbf{x})} \langle T_{xy}(0,0) T_{xy}(t,\mathbf{x}) \rangle$$

J. Ghiglieri et al, "Gravitational waves background from Standard Model Physics: Complete leading order". JHEP (2020).

Perturbative analysis

Generalization to an arbitrary theory with gauge fields, real scalars and Weyl fermions:

$$\begin{aligned} G_{xy;xy}^{<}(k) &\to \hat{\eta}\left(T, \frac{k}{T} \equiv \hat{k}\right) \simeq \hat{\eta}_{HTL}\left(T, \hat{k}\right) + \sum_{n=1}^{N_g} g_n(T)^2 N_n\left(\frac{1}{2}T_{n,\text{Ad}}\,\hat{\eta}_{gg}(\hat{k})\right) \\ &+ \sum_{\hat{\iota}} T_{n,\hat{\iota}}\,\hat{\eta}_{sg}(\hat{k}) + \frac{1}{2}\sum_{\hat{\alpha}} T_{n,\hat{\alpha}}\,\hat{\eta}_{fg}(\hat{k})\right) \\ &+ \frac{1}{4}\sum_{\hat{\iota}\alpha\beta} \left|\psi_{\alpha\beta}^i(T)\right|^2\,\hat{\eta}_{sf}(\hat{k}), \qquad m_D \ll T \end{aligned}$$

Perturbative analysis

Generalization to an arbitrary theory with gauge fields, real scalars and Weyl fermions:

$$\begin{aligned} G_{xy;xy}^{\leq}(k) &\to \hat{\eta}\left(T, \frac{k}{T} \equiv \hat{k}\right) \simeq \hat{\eta}_{HTL}(T, \hat{k}) + \sum_{n=1}^{N_g} g_n(T)^2 N_n\left(\frac{1}{2}T_{n,\mathrm{Ad}}\,\hat{\eta}_{gg}(\hat{k})\right) \\ &+ \sum_{\hat{\iota}} T_{n,\hat{\iota}}\,\hat{\eta}_{sg}(\hat{k}) + \frac{1}{2}\sum_{\hat{\alpha}} T_{n,\hat{\alpha}}\,\hat{\eta}_{fg}(\hat{k})\right) \\ &+ \frac{1}{4}\sum_{i\alpha\beta} \left|\psi_{\alpha\beta}^i(T)\right|^2\,\hat{\eta}_{sf}(\hat{k}), \qquad m_D \ll T\left(\Rightarrow \lambda \ll \frac{1}{2} \text{ in } \mathcal{N} = 4 \text{ SYM}\right) \end{aligned}$$

 $\mathcal{N} = 4$ Super Yang-Mills at weak coupling $g \to 0$

$$\mathcal{L}_{\text{SYM}} = \text{Tr}\left[-\frac{1}{2}G_{\mu\nu}^{2} + \left(D_{\mu}\Phi_{A}\right)^{2} + i\bar{\psi}_{i}\gamma^{\mu}D_{\mu}\psi_{i} - \frac{1}{2}g^{2}(i[\Phi_{A}, \Phi_{B}])^{2} - ig\bar{\psi}_{i}\left[\alpha_{ij}^{p}X_{p} + i\beta_{ij}^{q}\gamma_{5}Y_{q}, \psi_{j}\right]\right] + \mathcal{L}_{\text{gf}} + \mathcal{L}_{\text{gh}} + \Delta\mathcal{L}_{\text{SYM}}$$

A. Ringwald et al, "Gravitational waves as a Big Bang thermometer", JCAP (2021)

Emission rate at weak coupling

 $\lambda = 0.1$

 $\lambda = 0.5$

 $\lambda = 1.8$

Energy production rate at weak coupling

Emission rate at weak coupling

Energy production rate at weak coupling

Peak magnitude of the spectrum with respect to λ

Emission rate from a static source

Comparison between the strongly-coupled and the weakly-coupled regimes

EVOLUTION WITH THE EXPANSION OF THE UNIVERSE

Cosmological evolution

Emission from a static thermal equilibrium state at temperature *T*

 \longleftrightarrow Emission from a box at fixed *T*

Emission from a thermal plasma in the Universe \Rightarrow Consider the expansion of the Universe

Expanding cosmological model with time-dependent temperature

interactions

Expanding cosmological model with time-dependent temperature

Cosmological evolution

The expansion of the Universe changes the spectrum by three effects:

- Rate of change of temperature dT/dt.
- Dilution of the fraction of energy of gravitational waves.
- Redshift of the frequency.

These effects depend on the number of effective degrees of freedom g_{*s} :

$$g_{*s}(T) = \frac{s(T)}{\frac{2\pi^2}{45}T^3}$$

Cosmological evolution

Present-day energy density per unit time and per logarithmic current frequency:

 $\Omega(f) \equiv \Omega(f; \lambda, \boldsymbol{g}_{*\boldsymbol{s}})$

- Weak coupling $\lambda \to 0$: $g_{*s,WC} = 15N_c^2$
- Strong coupling $\lambda \to \infty$: $g_{*s,SC} = \frac{45}{4}N_c^2$

The expansion of the Universe makes the spectra in the two regimes different even if the emission from the fixed plasma were the same.

Current energy density after convolution with the expansion of the Universe,

with
$$\tilde{\Omega} \equiv \frac{M_{Pl}}{T_{max}} \frac{\Omega}{N_c^2}$$

Conclusions

- We have compared the strong coupling limit with a extrapolation of the leadingorder perturbative calculation to intermediate values of the coupling.
- For the values of the coupling considered we have found no qualitative difference in the shape of the GW spectrum between weak and strong coupling.
- In particular, we have found a quantitative agreement between the stronglycoupled and the weakly-coupled static spectra for the limit value $\lambda = 0.5$.

Note for future work:

This analysis can help us build intuition about how to access strongly-coupled plasma dynamics via gauge/gravity duality. It could be extended to other more realistic, non-conformal theories.