SIGNATURES OF THE YANG-MILLS DECONFINEMENT TRANSITION FROM THE GLUON TWO-POINT CORRELATOR

Duifje Maria van Egmond

arXiv:2206.03841 [hep-ph]

In collaboration with Urko Reinosa

Centre de Physique Théorique, Ecole Polytechnique

SEWM 2022

1/19

INTRODUCTION

- At some very high temperature T_c , hadrons become free quarks and gluons \rightarrow quark-gluon plasma.
- An order parameter for this transition is the Polyakov loop:

- Under center symmetry, $\ell \to Z_N \ell$, so deconfinement is signaled by a broken center symmetry (in pure Yang-Mills).
- Confirmed by lattice data: second order transition for SU(2), first order for SU(3).

ENCODING OF THE TRANSITION

Polyakov loop:

$$\ell \sim \langle P e^{i \int_0^\beta d\tau A_0(\tau,x)} \rangle \sim e^{-\beta F}.$$

Because the Polyakov loop is related to A_0 , it is expected that the transition is encoded in (the tower of)

$$\langle A_0 \rangle, \langle A_0 A_0 \rangle, \ldots, \langle A_0^n \rangle.$$

For the appropriate choice of gauge, can the transition be reflected in the lowest order correlators?

LANDAU GAUGE CORRELATOR

In principle:

- $\langle A \rangle$ is found by minimizing the effective action $\Gamma[A]$. It represents the state of the system . $\langle A_0 \rangle \rightarrow$ order parameter.
- The two-point correlator derives from the effective action

$$1 \left/ \left. \frac{\partial^2 \Gamma}{\partial A^2} \right|_{A = \langle A \rangle_c} = \langle A A \rangle_c$$

so for SU(2), $\langle A_0 A_0 \rangle$ should diverge at T_c .

In practice:

- In the Landau gauge, $\partial_{\mu}A_{\mu} = 0$, then $\langle A_0 \rangle = 0$. \rightarrow no order parameter.
- No evidence of divergence of $\langle A_0 A_0 \rangle$ was found on the (gauge-fixed) lattice and in the continuum.

SU(2) LANDAU GAUGE CORRELATORS

Electric susceptibility (zero momentum longitudinal propagator)

イロト イポト イヨト イヨト

*T. Mendes and A. Cucchieri, PoS LATTICE2014, 183 (2015).

*L. Fister and J. M. Pawlowski, [arXiv:1112.5440 [hep- ph]](2012).

-

BACKGROUND FIELD GAUGES

- In the Landau gauge the effective action is not center-symmetric $\Gamma[A] \neq \Gamma[A^U]$.
- Introducing a background field \overline{A} , the effective action is gauge-invariant $\Gamma_{\overline{A}}[A] = \Gamma_{\overline{A}^U}[A^U]$. Landau-deWitt gauge:

$$ar{D}_{\mu}(A_{\mu}-ar{A}_{\mu})=0, \ \ {
m with} \ \ ar{D}_{\mu}\equiv\partial_{\mu}-\Big[ar{A}_{\mu},\cdot\Big].$$

- In the Background field effective action one looks at $\tilde{\Gamma}[\bar{A}] = \Gamma_{\bar{A}}[\bar{A}]$.
 - ► The two-point function $\langle AA \rangle_c$ is not directly accessible from $\tilde{\Gamma}_{\bar{A}}$.
 - ► Relies on the strict background independence of $\tilde{\Gamma}[\bar{A}]$, which is not easy to maintain in the presence of truncations.
- We propose the Center-symmetric Landau gauge, which fixes $\bar{A} = \bar{A}_c$. Then $\Gamma_{\bar{A}}[A] = \Gamma_{\bar{A}} u^c [A^{U^c}]$.

イロン 不得入 不足入 不足入 一日

OUR SETUP

• We work in the Landau-deWitt gauge with a background field \bar{A}_{μ} :

$$ar{D}_{\mu}(A_{\mu}-ar{A}_{\mu})=0, ~~{
m with}~~ar{D}_{\mu}\equiv\partial_{\mu}-\Big[ar{A}_{\mu},\cdot\Big].$$

- We take A^a_{μ} and \bar{A}^a_{μ} in the temporal direction, $\propto \delta_{\mu 0}$, and along the diagonal color directions (σ^3 for SU(2), (λ^3 , λ^8) for SU(3)), so that $\Gamma[A, \bar{A}] \propto V(A, \bar{A})$.
- The center-symmetric values for A^a_{μ} and \bar{A}^a_{μ} are found by Weyl chambers. For example in SU(2), $A_{c,\mu} = \bar{A}_{c,\mu} = \delta_{\mu 0} \frac{T}{g} \pi \frac{\sigma^3}{2}$.
- We fix $\overline{A} = \overline{A}_c$: Center-symmetric Landau gauge. Center-symmetric phase when $\langle A \rangle = A_c$, \rightarrow order parameter.

CURCI-FERRARI MODEL

We have computed $\langle A \rangle$ and $\langle A(0, p)A(0, -p) \rangle$ up to first loop order in the finite temperature Curci-Ferrari model:

$$S=S_{YM}+S_{gf}+\int_{x, au}rac{m^2}{2}(A^a_\mu-ar{A}^a_\mu)^2$$

Several motivations:

- Perturbative gauge-fixed Yang-Mills breaks down at low energies (Landau pole, Gribov copies...), there is no analytical model for this region.
- A gluon mass term seems to dominate the (unknown) gauge-fixed action in the IR; decoupling behaviour on the lattice. CF could be an effective model.
- The CF model is renormalizable, avoids the Landau pole and lifts the degeneracy between Gribov copies. Perturbative window into non-perturbative region.

RESULTS - $T_c(MeV)$

	Lattice	FRG-BG ¹	CF-BG, $1-lp^2$	CF-BG, 2-lp 3	CF-CS, 1-lp
SU(2)	295	230	238	284	265
SU(3)	270	275	185	254	267

BG: Background effective action CS: Centersymmetric Landau gauge

Duifje van Egmond

¹L. Fister and J. M. Pawlowski, Phys.Rev. D88 (2013) 045010

 $^{^2}$ U. Reinosa, J. Serreau, M. Tissier and N. Wschebor, Phys.Lett. B742 (2015) 61-68.

³U. Reinosa, J. Serreau, M. Tissier and N. Wschebor, Phys.Rev. D93 (2016) 105002. < ≧ → ≧ ∽ ९ ୯ ୯

FEYNMAN DIAGRAMS GLUON PROPAGATOR

Duifje van Egmond

SEWM 2022 10/19

RESULTS: SU(2) GLUON PROPAGATOR

m=0.68 GeV, μ =1 GeV, g=7.5

*DvE, U. Reinosa, J. Serreau and M. Tissier, SciPost Phys. 12, 087 (2022).

Duifje van Egmond

SEWM 2022 11/19

-

SU(2) DRESSING FUNCTION

프 🖌 👘 프

RESULTS: SU(3) GLUON PROPAGATOR

*DvE, U. Reinosa, J. Serreau and M. Tissier, SciPost Phys. 12, 087 (2022).

Duifje van Egmond

SEWM 2022 13/19

-

SU(3) PROPAGATOR DIFFERENCE

ъ

SU(3) DRESSING FUNCTION

프 🖌 👘 프

CONCLUSION AND OUTLOOK

- We have performed, for the first time, calculations of the gluon one-and two-point correlator in the centersymmetric Landau gauge.
- We find a good agreement with lattice data for T_c .
- We find that for SU(2), the deconfinement transition is signaled by a divergence of the longitudinal gluon propagator for $k \to 0$.
- For SU(3), the difference between the propagators in the neutral color mode is an order parameter for the transition.
- This model can be tested on the lattice by changing the boundary conditions in the Landau gauge [with O. Oliveira and P. Silva].
- Ideas for future works: RG improvement, transversal propagator and two-loop calculation.

DISCUSSION

Landau gauge Self-consistent Landau gauge Center-symmetric Landau Gauge

SEWM 2022 17/19

DISCUSSION

Duifje van Egmond

SEWM 2022 18 / 19

æ

DISCUSSION

э 19 / 19SEWM 2022

B b