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Introduction



Standard modelling of heavy ion collisions
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Spacetime evolution dominated by hydrodynamic phase

▶ early stage requires non-equilibrium description, but
system quickly equilibrates

▶ strongly interacting QGP leaves imprints of
thermalization and collectivity in final state observables

anisotropic flow explained via anisotropic pressure
gradients in hydrodynamic evolution

▶ transport description after hadronization
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Small systems
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Very dilute, hydrodynamics not necessarily applicable

▶ still collective behaviour is observed!
▶ collectivity can also be explained in kinetic theory, a

microscopic description which does not rely on equilibration
anisotropic flow explained via individual scatterings being
more likely in some directions

▶ limit of large interaction rate is hydrodynamics!

Aim

Case study in simplified kinetic theory description on full range from small to large
system size with comparison to hydrodynamics based on transverse flow
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Theoretical Description



Model and Setup
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▶ describing time evolution of boost-invariant phase space distribution of massless
bosons using Boltzmann equation in conformal RTA

pµ∂µf = −pµuµ

τR
(f − feq) , τR = 5

η

s
T−1

initialized with vanishing longitudinal pressure and no momentum anisotropies

time evolution of f depends only on opacity γ̂ =
(
5 η
s

)−1
(

30
νeffπ

2
1
π

dE
(0)
⊥

dη
R

)1/4

Kurkela, Wiedemann, Wu EPJC 79 (2019) 965

energy weighted d.o.f.: dependence on IS only in energy density

▶ first study: simple initial energy density introducing only one eccentricity at a time

(no ecc.) (n = 2) (n = 3) (n = 4)
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Analytical and numerical treatment
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▶ typical values of γ̂

min. bias pp: γ̂ ≈ 0.88
(

η/s
0.16

)−1 (
R

0.4 fm

)1/4(dE
(0)
⊥ /dη

5GeV

)1/4 (
νeff
40

)−1/4

central PbPb: γ̂ ≈ 9.2
(

η/s
0.16

)−1 (
R

6 fm

)1/4(dE
(0)
⊥ /dη

4000GeV

)1/4 (
νeff
40

)−1/4

⇒ treat problem both analytically (for small γ̂) and numerically

linearized analytical treatment

▶ ”opacity expansion” in number of
scatterings

0th order : pµ∂µf
(0) = 0 ,

1st order : pµ∂µf
(1) = C[f (0)]

Heiselberg, Levy PRC 59 (1999) 2716

Borghini, Gombeaud EPJC 71 (2011) 1612

▶ expansion parameter CRTA[f ] ∼ γ̂

▶ linearize also in eccentricity

numerical treatment

▶ nonlinear in both opacity and eccentricity

▶ Relativistic Lattice Boltzmann solver for
energy-weighted d.o.f.
Ambrus, Blaga PRC 98 (2018) 035201
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Results and Comparisons



Opacity Dependence
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Kurkela et al.

Cooling:

▶ numerical curve smoothly connects the small-γ̂ linearized and large-γ̂ Bjorken scaling
results

Anisotropic flow:

▶ linear order results tangential to numerical curve at small opacities

▶ agreement with previous results in identical setup
Kurkela, Taghavi, Wiedemann, Wu PLB 811 (2020) 135901

▶ saturation at higher γ̂

⇒ expectation: hydrodynamic behaviour at large opacities
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Comparison to Hydrodynamics
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▶ agreement at large τ0: no pre-equilibrium

▶ small τ0: pre-equilibrium causes discrepancies

▶ convergence only in unphysical order of limits

⇒ Why is pre-equilibrium important for observables
that develop at τ ∼ R?
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Early time longitudinal cooling
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▶ τ ≪ R: only longitudinal expansion ⇒ local Bjorken flow cooling

follows universal attractor curve in scaling variable w̃ = Tτ
4πη/s

early times: τ4/3e , τ1/3 dE⊥
dy

∝ γ̂−4/9w̃γ late times: τ4/3e , τ1/3 dE⊥
dy

∝ γ̂−4/9

τe in kin. theory

→ →

τe in visc. hydro

τ = 3 · 10−6fm

→

τ = 8 · 10−4fm

→

τ = 3 · 10−3fm
(times for 4πη/s = 0.05)

▶ dynamics depend on local energy density ⇒ inhomogeneous cooling
decrease of eccentricity before transverse flow develops
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Improved Hydro Setups



How to ”fix” Hydro?
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▶ idea: counteract difference in pre-equilibrium by different hydro initialization

τe in kin. theory

→ →

τe in visc. hydro, rescaled e0

τ = 3 · 10−6fm

→

τ = 8 · 10−4fm

→

τ = 3 · 10−3fm
(times for 4πη/s = 0.05)

▶ more realistic initial condition: average profile (Pb+Pb 30-40%)
fixed profile: vary γ̂ via η/s: γ̂ ≈ 11 · (4πη/s)−1
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Initializing on the attractor
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▶ accuracy depends on timescale separation of pre-equilibrium and transv. expansion
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Hybrid schemes
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▶ idea: evolve system in kinetic theory until ⟨Re−1⟩ϵ drops to specific value, then
match Tµν to hydro code

▶ system immediately starts following similar evolution to a pure hydro run
switching too early causes errors in pre-equilibrium
results from late switching times more accurate than rescaled hydro

▶ works just as well with KøMPøST, but with limited range of applicability
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Switching at fixed time
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▶ large opacities: ”everything works”

▶ small opacities: ”nothing works”

▶ benefit of switching at fixed ⟨Re−1⟩: accuracy independent of η/s
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Comparison of improved hydro schemes with kin. theory
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▶ perfect agreement at large γ̂

▶ rescaled hydro accurate if 4πη/s ≲ 3 (for Pb+Pb 30-40%)
▶ still good agreement with linear order results at small opacities

computed (mostly) numerically, since initial condition no longer analytical

▶ Hybrid schemes work well, can improve on rescaled hydro at intermediate opacities,
but KøMPøST slightly underestimates ϵp
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Summary
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▶ kinetic theory description covers full range in opacity from small to large systems

▶ naive comparison to hydrodynamics: disagreement even at large opacities!

difference during pre-equilibrium

eccentricity decreases before onset of transverse expansion

▶ different setup of hydrodynamic simulations can bring agreement at large opacities

initializing hydrodynamics on its early-time attractor

hybrid models with kinetic theory for pre-equilibrium
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Backup



Early time Bjorken scaling
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▶ τ ≪ R: no transverse expansion, system locally behaves like 0+1D Bjorken flow

universal attractor curve scaling in the variable w̃(τ,x⊥) =
T (τ,x⊥)τ

4πη/s
Giacalone, Mazeliauskas, Schlichting, PRL 123 (2019) 262301

w̃ ≫ 1: τ4/3e = const., τ1/3 dE⊥
dy

= const.

w̃ ≪ 1: model dependent power law τ4/3e ∼ w̃γ
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▶ inhomogeneous cooling changes energy density profile
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