Development of transverse flow for small and large systems in conformal kinetic theory

Clemens Werthmann in Collaboration with Victor Ambruş and Sören Schlichting based on PRD 105 (2022) 014031 and WiP

Bielefeld University

Introduction

Spacetime evolution dominated by hydrodynamic phase

- early stage requires non-equilibrium description, but system quickly equilibrates
- strongly interacting QGP leaves imprints of thermalization and collectivity in final state observables
 - anisotropic flow explained via anisotropic pressure gradients in hydrodynamic evolution
- transport description after hadronization

Hiroshi Masui (2008)

Small systems

Very dilute, hydrodynamics not necessarily applicable

- collectivity can also be explained in kinetic theory, a microscopic description which does not rely on equilibration
 - anisotropic flow explained via individual scatterings being more likely in some directions
- limit of large interaction rate is hydrodynamics!

Aim

Case study in simplified kinetic theory description on full range from small to large system size with comparison to hydrodynamics based on transverse flow

Theoretical Description

 describing time evolution of boost-invariant phase space distribution of massless bosons using Boltzmann equation in conformal RTA

$$p^{\mu}\partial_{\mu}f = -\frac{p^{\mu}u_{\mu}}{\tau_R}(f - f_{eq}), \quad \tau_R = 5\frac{\eta}{s}T^{-1}$$

initialized with vanishing longitudinal pressure and no momentum anisotropies

• time evolution of f depends only on opacity $\hat{\gamma} = \left(5\frac{\eta}{s}\right)^{-1} \left(\frac{30}{\nu_{\text{eff}}\pi^2} \frac{1}{\pi} \frac{\mathrm{d}E_{\perp}^{(0)}}{\mathrm{d}\eta}R\right)^{1/4}$

Kurkela, Wiedemann, Wu EPJC 79 (2019) 965

energy weighted d.o.f.: dependence on IS only in energy density

first study: simple initial energy density introducing only one eccentricity at a time

Analytical and numerical treatment

• typical values of $\hat{\gamma}$

min. bias pp:
$$\hat{\gamma} \approx 0.88 \left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{0.4 \, \text{fm}}\right)^{1/4} \left(\frac{dE_{\perp}^{(0)}/d\eta}{5 \, \text{GeV}}\right)^{1/4} \left(\frac{\nu_{\text{eff}}}{40}\right)^{-1/4}$$
central PbPb: $\hat{\gamma} \approx 9.2 \left(\frac{\eta/s}{0.16}\right)^{-1} \left(\frac{R}{6 \, \text{fm}}\right)^{1/4} \left(\frac{dE_{\perp}^{(0)}/d\eta}{4000 \, \text{GeV}}\right)^{1/4} \left(\frac{\nu_{\text{eff}}}{40}\right)^{-1/4}$

 \Rightarrow treat problem both analytically (for small $\hat{\gamma})$ and numerically

linearized analytical treatment

 "opacity expansion" in number of scatterings

 $\begin{array}{ll} \mbox{0th order}: \ p^\mu \partial_\mu f^{(0)} = 0 \ , \\ \mbox{1st order}: \ p^\mu \partial_\mu f^{(1)} = C[f^{(0)}] \end{array}$

Heiselberg, Levy PRC 59 (1999) 2716

Borghini, Gombeaud EPJC 71 (2011) 1612

- expansion parameter $C_{ ext{RTA}}[f] \sim \hat{\gamma}$
- linearize also in eccentricity

numerical treatment

- nonlinear in both opacity and eccentricity
- Relativistic Lattice Boltzmann solver for energy-weighted d.o.f.

Ambrus, Blaga PRC 98 (2018) 035201

Results and Comparisons

Opacity Dependence

Cooling:

numerical curve smoothly connects the small- \u03c6 linearized and large- \u03c6 Bjorken scaling results

Anisotropic flow:

- linear order results tangential to numerical curve at small opacities
- agreement with previous results in identical setup

Kurkela, Taghavi, Wiedemann, Wu PLB 811 (2020) 135901

- \blacktriangleright saturation at higher $\hat{\gamma}$
- \Rightarrow expectation: hydrodynamic behaviour at large opacities

Comparison to Hydrodynamics

Early time longitudinal cooling

▶ dynamics depend on local energy density ⇒ inhomogeneous cooling
 ■ decrease of eccentricity before transverse flow develops

Improved Hydro Setups

idea: counteract difference in pre-equilibrium by different hydro initialization

more realistic initial condition: average profile (Pb+Pb 30-40%)
 fixed profile: vary γ̂ via η/s: γ̂ ≈ 11 · (4πη/s)⁻¹

accuracy depends on timescale separation of pre-equilibrium and transv. expansion

- ▶ idea: evolve system in kinetic theory until $(Re^{-1})_{\epsilon}$ drops to specific value, then match $T^{\mu\nu}$ to hydro code
- system immediately starts following similar evolution to a pure hydro run
 - switching too early causes errors in pre-equilibrium
 - results from late switching times more accurate than rescaled hydro
- works just as well with KøMPøST, but with limited range of applicability

- large opacities: "everything works"
- small opacities: "nothing works"
- benefit of switching at fixed $\langle \mathrm{Re}^{-1} \rangle$: accuracy independent of η/s

Comparison of improved hydro schemes with kin. theory

- \blacktriangleright perfect agreement at large $\hat{\gamma}$
- ▶ rescaled hydro accurate if $4\pi\eta/s \lesssim 3$ (for Pb+Pb 30-40%)
- still good agreement with linear order results at small opacities
 - computed (mostly) numerically, since initial condition no longer analytical
- Hybrid schemes work well, can improve on rescaled hydro at intermediate opacities, but KøMPøST slightly underestimates ep

- kinetic theory description covers full range in opacity from small to large systems
- naive comparison to hydrodynamics: disagreement even at large opacities!
 - difference during pre-equilibrium
 - eccentricity decreases before onset of transverse expansion
- different setup of hydrodynamic simulations can bring agreement at large opacities
 - initializing hydrodynamics on its early-time attractor
 - hybrid models with kinetic theory for pre-equilibrium

Backup

Early time Bjorken scaling

inhomogeneous cooling changes energy density profile