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Typical time evolution of the gluon occupation number in a weakly-coupled Bjorken-expanding plasma
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Introduction: Hydrodynamization
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Out of equilibrium attractors

far and close to equilibrium

 Many theories describing the pre-hydrodynamic stage exhibit so-called
“attractor” solutions. These solutions have been sought, found, and
Intensively studied over the past decade.

* The nature of the attractors can be different in different models [1]:
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[1] A. Kurkela, W. van der Schee, U. A. Wiedemann, B. Wu “What attracts to attractors?” Phys. Rev. Lett. 124, 102301 (2020)



Adiabatic hydrodynamization
(AH)



Adiabatic hydrodynamization

as proposed by Brewer, Yan, and Yin [2]

e |dea: the essential feature of an attractor is a reduction in the number of
quantities needed to describe the system.

 Brewer, Yan and Yin [2] conjectured that this is due to an emergent timescale
TRedu << THydro @fter which a set of “pre-hydrodynamic™ slow modes (that
gradually evolve into hydrodynamic modes) govern the system.

 Their proposal: try to understand the emergence of 7.4, (@t which only slow
modes remain) using the machinery of the adiabatic approximation in
quantum mechanics.

[2] J. Brewer, L. Yan, Y. Yin “Adiabatic hydrodynamization in rapidly-expanding quark-gluon plasma” Phys. Lett. B 816, 136189 (2021)



Adiabatic hydrodynamization

adiabatic theorem and notion of adiabaticity

 Consider a system whose evolution is given by

0. |y) = — H(7)|y),

where H(7) has eigenstates/eigenvalues { | n(7)), E (7)} 2

H(7) | n(7)) = E (1) | n(7)).

 Then, one may write the system’s evolution as

o0

) = Y a,()e” I B (o)),

n=0



» Adiabaticity is the degree to which transitions between different instantaneous
eigenstates are suppressed:
Adiabaticity for the n-th eigenstate < — <« |E —E |, forn # m.

dy

 \When this Is the case, provided there is an “energy” gap between the ground
state and the excited states, one has

o0

y) = Y a,()e” B n(r))

n=0
R oay e J" Eg(z)dr |0(7)),

that is to say, the dynamics of the system collapses onto a single form.

—> Reduction in the number of variables needed to describe the system.



Adiabatic hydrodynamization

Brewer, Yan, and Yin’s RTA analysis

* The first exploration of this
hypothesis was made in [2],
studying an RTA kinetic
theory in a Bjorken-
expanding plasma:
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[2] J. Brewer, L. Yan, Y. Yin “Adiabatic hydrodynamization in rapidly-expanding quark-gluon plasma” Phys. Lett. B 816, 136189 (2021)



‘Bottom-up’ thermalization



‘Bottom-up’ thermalization
as formulated by Baier, Mueller, Schiff, and Son [3]

In the BMSS scenario (in weakly-coupled QCD), thermalization proceeds as

1. Over-occupied hard gluons f, > 1 at very early times 1 < Q7 < a

\)

2. Hard gluons become under-occupied f, < 1, when 05;3/2 K0T K aS_S/Z

3. Thermalization of the soft sector after o P« QO

[3] R. Baier, A. H. Mueller, D. Schiff, D. T. Son, “‘Bottom-up’ thermalization in heavy ion collisions” Phys. Lett. B 502, 51-58 (2001)
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‘Bottom-up’ thermalization
as formulated by Baier, Mueller, Schiff, and Son [3]

In the BMSS scenario (in weakly-coupled QCD), thermalization proceeds as

1. Over—oecupled hard gluons f > | at very early times 1 < Q T K a_3/2

2. Hard gluons become under—oceupledf < 1 When 05_3/2 < Q T K< a‘5/2

3. Thermalization of the soft sector after o P« QO

Specifically, stage 1 predicts that
1 alnf<pz> 1 _ 1 alnr<pj_>

2 (p2) 3 2 (p1)

[3] R. Baier, A. H. Mueller, D. Schiff, D. T. Son, “‘Bottom-up’ thermalization in heavy ion collisions” Phys. Lett. B 502, 51-58 (2001)



Evidence for AH in QCD effective kinetic theory
A. Mazeliauskas, J. Berges [4]

« After a transient time, [4] observed that the distribution function took a time-
dependent scaling form f(p |, p,, T) = T“(T)fs(fﬁ(f)p 1,7/ )
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[4] A. Mazeliauskas, J. Berges, “Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma” Phys. Rev. Lett. 122, 122301 (2019)
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« After a transient time, [4] observed that the distribution function took a time-
dependent scaling form f(p |, p,, T) = T“(T)fs(fﬁ(f)p 1,7/ )
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“Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma” Phys. Rev. Lett. 122, 122301 (2019)




The gluon collision kernel

in the small-angle scattering approximation [5]

* To get some analytic control, we [6] work in the small-angle scattering
approximation [D]

0, f = =20,.f = 4n NAcs 1| LLA1Vaf+ L1V, - (B0 +1)) |

where

) ) % B mlz) B pUV) Nl <Pi>
LlLf1 = L(l S L,pf “oNg _ID<PIR 2 ln( D )

[5] A.H. Mueller, “The Boltzmann equation for gluons at early times after a heavy ion collision,” Phys. Lett. B 475, 220 (2000)
[6] J. Brewer, B. Scheihing-Hitschfeld, Y. Yin “Scaling and adiabaticity in a rapidly expanding gluon plasma” JHEP 05 (2022) 145



 Furthermore, for the first stage of the bottom-up scenario we can consider the
apprOX| mat|OnS [6] " [6] J. Brewer, B. Scheihing-Hitschfeld, Y. Yin “Scaling and adiabaticity in a rapidly expanding gluon plasma” JHEP 05 (2022) 145
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Scaling and adiabaticity



‘Optimizing’ adiabaticity
rescaling the degrees of freedom
 From the previous discussion, we see that scaling plays a crucial role Iin this

problem.

* This gives us a very useful tool to ‘optimize’ adiabaticity. For instance, if we
have a distribution function evolving as

f(p,p,.7) =A(7) w(pl/B(T),pZ/C(T); T) ,

then we can look for the choice of A, B, C that maximize the degree to which
the dynamics of w is adiabatic.



q = 4na; Neleo [ f1[f 17
‘Optimizing’ adiabaticity

In practice

* The original kinetic equation has the form
_ 2
Taz' f_pzapzf_ Q(T) fo

» Then, by introducing ¢ = p,/B, ¢ = p,/C, y = log(z/7;), and the scaling
exponents a = dy InA, f=— 0y InB,y = — 6y In C, one obtains that

wa=—%w,

with #Z = a — (1 —y)[68§+5@g] +/

q in = q
c2(1-y)° "~ B

§ 1
Gp (0% + Zaév) + {0,

q =



What is the advantage of this?

» Because A, B, C are a choice of coordinates (a “gauge” choice to describe
the system), we can choose them such that g = g = 1.

 Then, we get

#=a-(1-p|Z+E0 +)

, 1

which is a separable Hamiltonian of the form
Z = foy) Hy+ fi(y) H: + () H,,

where the Hamiltonians H,, H 2 HC are constant and can be “diagonalized”
simultaneously. In this situation, the adiabatic approximation is exact.
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Results

low-lying energy states

- We can choose A such that @ = y + 2/ — 1 to set the ground state energy &, , = 0.

» The eigenvalues of Z are %n,m =2n(l —y)—-2mp, nm=0,1,2, ...

* The left and right eigenstates are:
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Va 245
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Results

evolution equations for the scaling exponents

» This “diagonalization” was achieved by taking ¢ = gz = 1. This implies
evolution equations for the scaling exponents:

0= 0,Ing+2p) B, d,y = (d,Ing+2y)(y - D).

* To close the system, one needs to specify how g evolves.

 However, since we showed that the system is gapped, we can get a good
description of the evolution by solving for g| f; 7] assuming w is in its ground
state.

o (Corrections from excited states can also be included systematically.



Flow of y, // under time evolution
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Scaling exponents
comparison with QCD EKT

 \We compare our results with Flow equations [6] (solid) versus QCD EKT [4] (dashed)
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Summary

We conclude that the first stage of the ‘bottom-up’ thermalization scenario is an
example of adiabatic hydrodynamization. Furthermore, our results explain:

1. How an out-of-equilibrium weakly-coupled gluon plasma rapidly

approaches a pre-hydrodynamic stage whose subsequent evolution has
ittle memory of its initial conditions, all long before hydrodynamization.

2. The emergence of time-dependent scaling as a feature of QCD kinetic
theory.

3. The fixed points of the (hon-linear) dynamical evolution as instantaneous
ground states of an effective Hamiltonian.



Outlook

Possible generalizations we have in mind:
* |nclude radial expansion in the kinetic equation (relevant for HIC)
* (Generalize the analysis to a broader class of collision kernels

 |dentify the adiabatic aspects of hydrodynamization in strongly coupled
theories (e.g., using AdS/CFT)



Thank you!



