ULB

UNIVERSITÉ LIBRE DE BRUXELLES

Sébastien Clesse Service de physique Théorique, Université Libre de Bruxelles (ULB)

Primordial black holes

A positivist review

SEWM conference - June 20-24 IPhT, Saclay - Université Paris VI, Paris

Background picture: artist view of GW190521 by Ingrid Bourgault

• How natural is PBH formation ?

• How natural is PBH formation ?

• Can (stellar-mass) PBHs be the dark matter ?

• How natural is PBH formation ?

Can (stellar-mass) PBHs be the dark matter ?

 Are LIGO/Virgo black holes primordial? How to distinguish stellar vs primordial black holes in gravitational-wave (GW) observations ?

Spectrum of density fluctuations after inflation

Spectrum of density fluctuations after inflation

Spectrum of density fluctuations after inflation

1. How natural is PBH formation ? At the QCD transition

From *known* thermal history:

- Change in the **number of relativistic degrees** of freedom
- Equation of state reduction, particularly at the QCD transition
- Critical threshold is reduced
- **Boosted PBH formation**, resulting in a bumpy mass function

Jedamzik, astro-ph/9605152

Cardal & Fuller, astro-ph/9801103 Jedamzik & Niemeyer, <u>astro-ph/9901293</u> Byrnes, Hindmarsh, Young, Hawkins, 1801.06138 Carr, S.C., Garcia-Bellido, Kühnel, 1906.08217 De Luca, Franciolini, Riotto et al., 2009.08268 Jedamzik, <u>2006.11172</u>, <u>2007.03565</u>

1. How natural is PBH formation ? At the QCD transition

From *known* thermal history:

- Change in the **number of relativistic degrees** of freedom
- Equation of state reduction, particularly at the QCD transition
- Critical threshold is reduced
- **Boosted PBH formation**, resulting in a bumpy mass function

Jedamzik, astro-ph/9605152

Cardal & Fuller, astro-ph/9801103 Jedamzik & Niemeyer, astro-ph/9901293 Byrnes, Hindmarsh, Young, Hawkins, 1801.06138 Carr, S.C., Garcia-Bellido, Kühnel, 1906.08217 De Luca, Franciolini, Riotto et al., 2009.08268 Jedamzik, <u>2006.11172</u>, <u>2007.03565</u>

- Nearly scale-invariant spectrum
- Spectral index: $n_s = 0.97$
- ▶ Peak at ~[2-3] M⊙
- Second peak at ~30 M_☉
- Two bumps at 10-6 and 106 M_{\odot}

1. How natural is PBH formation ? At the QCD transition

From *known* thermal history:

- Change in the **number of relativistic degrees** of freedom
- Equation of state reduction, particularly at the QCD transition
- Critical threshold is reduced
- **Boosted PBH formation**, resulting in a bumpy mass function

Jedamzik, astro-ph/9605152

Cardal & Fuller, astro-ph/9801103 Jedamzik & Niemeyer, astro-ph/9901293 Byrnes, Hindmarsh, Young, Hawkins, 1801.06138 Carr, S.C., Garcia-Bellido, Kühnel, 1906.08217 De Luca, Franciolini, Riotto et al., 2009.08268 Jedamzik, <u>2006.11172</u>, <u>2007.03565</u>

Inevitable

- **Naturally** leads to stellar-mass PBHs
- But does not solve the abundance/transition problem

- Nearly scale-invariant spectrum
- Spectral index: $n_s = 0.97$
- **Peak at ~[2-3] M**⊙
- Second peak at ~30 M_☉
- Two bumps at 10⁻⁶ and 10⁶ M_{\odot}

1. How natural is PBH formation? **PBH** baryogengesis

B. Carr, S.C., J. Garcia-Bellido, arXiv:1904.11482 and 1904.02129 Sakharov's Conditions:

• C and CP violation: of the standard model

Baryon number violation: sphaleron transitions from >TeV collisions Interactions out of thermal equilibrium: PBH collapse/shock wave **Eletroweak baryogenesis: need of exotic physics.**

PBH Baryogenesis: Gravitation

Explains the abondance of DM/baryon and baryon/photon ratios!

Maximal-<u>local</u> baryon asymmetry: $\eta \equiv n_{\rm b}/n_{\gamma} \sim \delta_{\rm CP}(T) \gg 1$

Total baryon asymmetry:

Horizon-PBH mass ratio:

$$\beta \equiv \frac{\rho_{\rm PBH}^{\rm form}}{\rho_{\rm cr}} \approx 10^{-9} \approx \eta$$
$$\frac{\Omega_{\rm DM}}{\Omega_{\rm b}} \approx \frac{\gamma}{1-\gamma} \simeq 5$$

1. How natural is PBH formation ? PBH baryogengesis

B. Carr, S.C., J. Garcia-Bellido, arXiv:1904.11482 and 1904.02129 Sakharov's Conditions:

• C and CP violation: of the standard model

Baryon number violation: sphaleron transitions from >TeV collisions Interactions out of thermal equilibrium: PBH collapse/shock wave **Eletroweak baryogenesis: need of exotic physics.**

PBH Baryogenesis: Gravitation

Explains the abondance of DM/baryon and baryon/photon ratios!

 $\eta \equiv n_{\rm b}/n_{\gamma} \sim \delta_{\rm CP}(T) \gg 1$ **Maximal-<u>local</u>** baryon asymmetry:

Total baryon asymmetry:

Horizon-PBH mass ratio:

$$\beta \equiv \frac{\rho_{\rm PBH}^{\rm form}}{\rho_{\rm cr}} \approx 10^{-9} \approx \eta$$
$$\frac{\Omega_{\rm DM}}{\Omega_{\rm b}} \approx \frac{\gamma}{1-\gamma} \simeq 5$$

Resolves dark matter, baryogengesis, coincidences, finetunings problems

1. How natural is PBH formation ? PBH baryogengesis

B. Carr, S.C., J. Garcia-Bellido, arXiv:1904.11482 and 1904.02129 Sakharov's Conditions:

• C and CP violation: of the standard model

Baryon number violation: sphaleron transitions from >TeV collisions Interactions out of thermal equilibrium: PBH collapse/shock wave **Eletroweak baryogenesis: need of exotic physics.**

PBH Baryogenesis: Gravitation

Explains the abondance of DM/baryon and baryon/photon ratios!

Maximal-<u>local</u> baryon asymmetry: $\eta \equiv n_{\rm b}/n_{\gamma} \sim \delta_{\rm CP}(T) \gg 1$

Total baryon asymmetry:

Horizon-PBH mass ratio:

$$\beta \equiv \frac{\rho_{\rm PBH}^{\rm form}}{\rho_{\rm cr}} \approx 10^{-9} \approx r_{\rm e}$$
$$\frac{\Omega_{\rm DM}}{\Omega_{\rm b}} \approx \frac{\gamma}{1-\gamma} \simeq 5$$

Resolves dark matter, baryogengesis, coincidences, finetunings problems

> Existence of a shock wave? **Dilution before BBN**? **Crude estimations**

 \bigcirc

• How natural is PBH formation ?

Can (stellar-mass) PBHs be the dark matter ?

 Are LIGO/Virgo black holes primordial? How to distinguish stellar vs primordial black holes in gravitational-wave (GW) observations ?

2. Can (stellar-mass) PBHs be the dark matter? Poisson in a PBH sea...

N-body simulations by Inman & Ali-Haimoud, 1907.08129 fрвн mpвн= 3 M₀, snapshots at z=99

On small scales, completely different than particle-CDM !

2. Can (stellar-mass) PBHs be the dark matter? Poisson in a PBH sea...

$$\delta = \frac{1}{\sqrt{N}} \times \left(\frac{1+z_{\rm eq}}{1+z}\right)$$

2. Can (stellar-mass) PBHs be the dark matter? Poisson in a PBH sea...

Merging rate suppression for early binaries down to LIGO/Virgo merging rates due to disruption in or by early clusters [Raidal+18] $f_{\rm sup} \approx 0.002$

$$\delta = \frac{1}{\sqrt{N}} \times \left(\frac{1+z_{\rm eq}}{1+z}\right)$$

2. Can (stellar-mass) PBHs be the dark matter? Poisson in a PBH sea... **High-z clusters: spatial correlations** in IR and X-ray backgrounds

Merging rate suppression for early binaries down to LIGO/Virgo merging rates due to disruption in or by early clusters [Raidal+18] $f_{\rm sup} \approx 0.002$

[Kashlinsky 16]

$$\delta = \frac{1}{\sqrt{N}} \times \left(\frac{1+z_{\rm eq}}{1+z}\right)$$

Press-Schechter: ~100% probability to collapse at **z > 20** for small perturbations M_{\odot} PBHs: halos up to $10^6 - 10^7 M_{\odot}$

2. Can (stellar-mass) PBHs be the dark matter? Poisson in a PBH sea... **High-z clusters: spatial correlations** in IR and X-ray backgrounds

Merging rate suppression for early binaries down to LIGO/Virgo merging rates due to disruption in or by early clusters [Raidal+18] $f_{\rm sup} \approx 0.002$

[Kashlinsky 16]

$$\delta = \frac{1}{\sqrt{N}} \times \left(\frac{1+z_{\rm eq}}{1+z}\right)$$

Press-Schechter: ~100% probability to collapse at **z** > **20** for small perturbations M_{\odot} PBHs: halos up to $10^6 - 10^7 M_{\odot}$

Ultra-faint dwarf galaxies min radius ~20 pc and large mass-to-light ratios (dynamical heating + accretion) [S.C.+17, S.C.+20]

 $\frac{\mathrm{d}\,r_{\mathrm{halo}}}{\mathrm{d}t} = \frac{4\sqrt{2}\,\pi\,G\,f_{\mathrm{PBH}}\,M\ln(M_{\mathrm{halo}}/2\,M)}{2\,\beta\,v_{\mathrm{vir}}\,r_{\mathrm{halo}}}$

subhalos diluted in larger halos

2. Can (stellar-mass) PBHs be the dark matter? Poisson in a PBH sea... **High-z clusters: spatial correlations** in IR and X-ray backgrounds

Merging rate suppression for early binaries down to LIGO/Virgo merging rates due to disruption in or by early clusters [Raidal+18] $f_{\rm sup} \approx 0.002$

Boost the merging rate of late binaries up to LIGO/Virgo rates [S.C.+20]

[Kashlinsky 16]

$$\delta = \frac{1}{\sqrt{N}} \times \left(\frac{1+z_{\rm eq}}{1+z}\right)$$

Press-Schechter: ~100% probability to collapse at **z > 20** for small perturbations M_{\odot} PBHs: halos up to $10^6 - 10^7 M_{\odot}$

Ultra-faint dwarf galaxies min radius ~20 pc and large mass-to-light ratios (dynamical heating + accretion) [S.C.+17, S.C.+20]

 $\underline{\mathrm{d}\,r_{\mathrm{halo}}} \, \underline{-} \, \frac{4\sqrt{2}\,\pi\,G\,f_{\mathrm{PBH}}\,M\ln(M_{\mathrm{halo}}/2\,M)}{4\sqrt{2}\,\pi\,G\,f_{\mathrm{PBH}}\,M\ln(M_{\mathrm{halo}}/2\,M)}$ $2\beta v_{
m vir} r_{
m halo}$ $\mathrm{d}t$ subhalos diluted in larger halos

2. Can (stellar-mass) PBHs be the dark matter? Poisson in a PBH sea... **High-z clusters: spatial correlations** in IR and X-ray backgrounds Merging rate suppression for early binaries [Kashlinsky 16] down to LIGO/Virgo merging rates due to disruption in or by early clusters Ali-Haimoud 1805.05912 [Raidal+18] **Press-Schechter:** $f_{\rm sup} \approx 0.002$ ~100% probability to collapse at **z** > **20** for small perturbations **Evade micro-lensing limits** [Carr+19] M_{\odot} PBHs: halos up to $10^6 - 10^7 M_{\odot}$ lensing + microlensing cluster microlensing probability of finding a **Ultra-faint dwarf galaxies** cluster min radius ~20 pc and large mass-to-light ratios observer Star from the (dynamical heating + accretion) LMC/SMC [S.C.+17, S.C.+20] $\underline{\mathrm{d}\,r_{\mathrm{halo}}} = \frac{4\sqrt{2}\,\pi\,G\,f_{\mathrm{PBH}}\,M\ln(M_{\mathrm{halo}}/2\,M)}{4\sqrt{2}\,\pi\,G\,f_{\mathrm{PBH}}\,M\ln(M_{\mathrm{halo}}/2\,M)}$ **Boost the merging rate of late binaries** 'Heated' PBH cluster $2\beta v_{ m vir} r_{ m halo}$ $\mathrm{d}t$ up to LIGO/Virgo rates [S.C.+20]

Black hole sling-shot away from its host cluster ~10-30% of DM

$$\delta = \frac{1}{\sqrt{N}} \times \left(\frac{1+z_{\rm eq}}{1+z}\right)$$

subhalos diluted in larger halos

Carr & Kuhnel, 2006.02838

Microlensing

Dynamical effects

Large scale structures

De Luca, Franciolini, Riotto et al., 2009.08268

1019 ĊMB IL

Hawking radiation **Microlensing** LIGO-Virgo CMB **Dynamical effects** Accretion Large scale structures

✓ Solar mass region excluded by several probes ✓ No limit on asteroid-masses ✓ If PBHs + WIMPs (or particle DM) => stronger limits (e.g. [Serpico+20] [Carr+20] [Byrnes+] [Boudaud+21])

Carr & Kuhnel, 2006.02838

De Luca, Franciolini, Riotto et al., 2009.08268

1019 ĊMB IL

Hawking radiation **Microlensing** LIGO-Virgo CMB **Dynamical effects** Accretion Large scale structures

✓ Solar mass region excluded by several probes ✓ No limit on asteroid-masses

 \checkmark If PBHs + WIMPs (or particle DM) => stronger limits (e.g. [Serpico+20] [Carr+20] [Byrnes+] [Boudaud+21])

Asteroid-mass PBH dark matter => new fine-tuning \bigcirc

- Lot of uncertainties (e.g. clustering) \bigcirc
- LIGO/Virgo limits less stringent \bigcirc
- Microlensing limits evaded? \bigcirc

Backreactions for wide mass distributions

11

• Dark Matter [Chapline 75, Carr+Hawking 75]

- Dark Matter [Chapline 75, Carr+Hawking 75]
- HSC: short microlensing event [Niikura+17]

- Dark Matter [Chapline 75, Carr+Hawking 75]
- HSC: short microlensing event [Niikura+17]
- OGLE: microlensing in galactic center [Mros+17]

- Dark Matter [Chapline 75, Carr+Hawking 75]
- HSC: short microlensing event [Niikura+17]
- OGLE: microlensing in galactic center [Mros+17]
- Quasar micrrolensing in non-aligned galaxies [Hawkins], (+microlensing in M31 and SMC/LMC)

- Dark Matter [Chapline 75, Carr+Hawking 75]
- HSC: short microlensing event [Niikura+17]
- OGLE: microlensing in galactic center [Mros+17]
- Quasar micrrolensing in non-aligned galaxies [Hawkins], (+microlensing in M31 and SMC/LMC)
- OGLE+Gaia: BHs in the low mass gap, towards the galactic $\mathbf{C}_{\mathbf{C}}^{\mathbf{A}}$ center) [Wyrzykowski+19]

- Dark Matter [Chapline 75, Carr+Hawking 75]
- HSC: short microlensing event [Niikura+17]
- OGLE: microlensing in galactic center [Mros+17]
- Quasar micrrolensing in non-aligned galaxies [Hawkins], (+microlensing in M31 and SMC/LMC)
- OGLE+Gaia: BHs in the low mass gap, towards the galactic $\mathbf{C}_{\mathbf{C}}^{\mathbf{A}}$ center) [Wyrzykowski+19]
- Critical radius of ultra-faint dwarf galaxies [SC+17]

- Dark Matter [Chapline 75, Carr+Hawking 75]
- HSC: short microlensing event [Niikura+17]
- OGLE: microlensing in galactic center [Mros+17]
- Quasar micrrolensing in non-aligned galaxies [Hawkins], (+microlensing in M31 and SMC/LMC)
- OGLE+Gaia: BHs in the low mass gap, towards the galactic $\mathbf{C}_{\mathbf{C}}^{\mathbf{A}}$ center) [Wyrzykowski+19]
- Critical radius of ultra-faint dwarf galaxies [SC+17]
- Core-cusp problem [SC+17, Boldrini+19]

- Dark Matter [Chapline 75, Carr+Hawking 75]
- HSC: short microlensing event [Niikura+17]
- OGLE: microlensing in galactic center [Mros+17]
- Quasar micrrolensing in non-aligned galaxies [Hawkins], (+microlensing in M31 and SMC/LMC)
- OGLE+Gaia: BHs in the low mass gap, towards the galactic $\frac{\overline{A}}{C}$ center) [Wyrzykowski+19]
- Critical radius of ultra-faint dwarf galaxies [SC+17]
- Core-cusp problem [SC+17, Boldrini+19]
- LIGO/Virgo (solar-mass and 20-100 solar mass)

- Dark Matter [Chapline 75, Carr+Hawking 75]
- HSC: short microlensing event [Niikura+17]
- OGLE: microlensing in galactic center [Mros+17]
- Quasar micrrolensing in non-aligned galaxies [Hawkins], (+microlensing in M31 and SMC/LMC)
- OGLE+Gaia: BHs in the low mass gap, towards the galactic $\mathbf{C}^{\mathbf{A}}$ center) [Wyrzykowski+19]
- Critical radius of ultra-faint dwarf galaxies [SC+17]
- Core-cusp problem [SC+17, Boldrini+19]
- LIGO/Virgo (solar-mass and 20-100 solar mass)
- GW background from pulsar timing arrays [De Luca+19]

- Dark Matter [Chapline 75, Carr+Hawking 75]
- HSC: short microlensing event [Niikura+17]
- OGLE: microlensing in galactic center [Mros+17]
- Quasar micrrolensing in non-aligned galaxies [Hawkins], (+microlensing in M31 and SMC/LMC)
- OGLE+Gaia: BHs in the low mass gap, towards the galactic $\overset{A}{C}$ center) [Wyrzykowski+19]
- Critical radius of ultra-faint dwarf galaxies [SC+17]
- Core-cusp problem [SC+17, Boldrini+19]
- LIGO/Virgo (solar-mass and 20-100 solar mass)
- GW background from pulsar timing arrays [De Luca+19]
- Subsolar triggers in LIGO-O2 (Phukon+21)

- Dark Matter [Chapline 75, Carr+Hawking 75]
- HSC: short microlensing event [Niikura+17]
- OGLE: microlensing in galactic center [Mros+17]
- Quasar micrrolensing in non-aligned galaxies [Hawkins], (+microlensing in M31 and SMC/LMC)
- OGLE+Gaia: BHs in the low mass gap, towards the galactic $\overset{A}{C}$ center) [Wyrzykowski+19]
- Critical radius of ultra-faint dwarf galaxies [SC+17]
- Core-cusp problem [SC+17, Boldrini+19]
- LIGO/Virgo (solar-mass and 20-100 solar mass)
- GW background from pulsar timing arrays [De Luca+19]
- Subsolar triggers in LIGO-O2 (Phukon+21)
- X-ray / infrared correlations (Kashlinsky 16)

- Dark Matter [Chapline 75, Carr+Hawking 75]
- HSC: short microlensing event [Niikura+17]
- OGLE: microlensing in galactic center [Mros+17]
- Quasar micrrolensing in non-aligned galaxies [Hawkins], (+microlensing in M31 and SMC/LMC)
- OGLE+Gaia: BHs in the low mass gap, towards the galactic $\overset{A}{C}$ center) [Wyrzykowski+19]
- Critical radius of ultra-faint dwarf galaxies [SC+17]
- Core-cusp problem [SC+17, Boldrini+19]
- LIGO/Virgo (solar-mass and 20-100 solar mass)
- GW background from pulsar timing arrays [De Luca+19]
- Subsolar triggers in LIGO-O2 (Phukon+21)
- X-ray / infrared correlations (Kashlinsky 16)
- Intermediate-mass and supermassive black holes (one per halo and BH-halo mass relation) [Carr+19]

11

- Dark Matter [Chapline 75, Carr+Hawking 75]
- HSC: short microlensing event [Niikura+17]
- OGLE: microlensing in galactic center [Mros+17]
- Quasar micrrolensing in non-aligned galaxies [Hawkins], (+microlensing in M31 and SMC/LMC)
- OGLE+Gaia: BHs in the low mass gap, towards the galactic $\mathbf{C}_{\mathbf{C}}^{\mathbf{A}}$ center) [Wyrzykowski+19]
- Critical radius of ultra-faint dwarf galaxies [SC+17]
- Core-cusp problem [SC+17, Boldrini+19]
- LIGO/Virgo (solar-mass and 20-100 solar mass)
- GW background from pulsar timing arrays [De Luca+19]
- Subsolar triggers in LIGO-O2 (Phukon+21)
- X-ray / infrared correlations (Kashlinsky 16)
- Intermediate-mass and supermassive black holes (one per halo and BH-halo mass relation) [Carr+19]

11

- Dark Matter [Chapline 75, Carr+Hawking 75]
- HSC: short microlensing event [Niikura+17]
- OGLE: microlensing in galactic center [Mros+17]
- Quasar micrrolensing in non-aligned galaxies [Hawkins], (+microlensing in M31 and SMC/LMC)
- OGLE+Gaia: BHs in the low mass gap, towards the galactic $\mathbf{C}_{\mathbf{C}}^{\mathbf{A}}$ center) [Wyrzykowski+19]
- Critical radius of ultra-faint dwarf galaxies [SC+17]
- Core-cusp problem [SC+17, Boldrini+19]
- LIGO/Virgo (solar-mass and 20-100 solar mass)
- GW background from pulsar timing arrays [De Luca+19]
- Subsolar triggers in LIGO-O2 (Phukon+21)
- X-ray / infrared correlations (Kashlinsky 16)
- Intermediate-mass and supermassive black holes (one per halo and BH-halo mass relation) [Carr+19]

Outline

• How natural is PBH formation ?

Can (stellar-mass) PBHs be the dark matter ?

primordial black holes in gravitational-wave (GW) observations ?

Are LIGO/Virgo black holes primordial? How to distinguish stellar vs

3. Are LIGO/Virgo black holes primordial ? Merging rates

3. Are LIGO/Virgo black holes primordial? Merging rates

Early binaries

 $R^{\text{early}} = \frac{1.6 \times 10^6}{\text{Gpc}^3 \,\text{vr}} f_{\text{sup}}(m_1, m_2, z) f_{\text{PBH}}^{53/37} f(m_1) f(m_2) \left[\frac{t(z)}{t_2}\right]^{-34/37}$ $\times \left(\frac{m_1 + m_2}{M_2}\right)^{-32/37} \left[\frac{m_1 m_2}{(m_1 + m_2)^2}\right]^{-34/37}.$

03/2016: Sasaki et al (f_{sup}=1): f_{PBH} < 0.01 for m_{PBH} = 30 M_O

2018-2020: Raidal et al., Hutsi et al.: $f_{sup} = 0.002$ if $f_{PBH} = 1$:

In LIGO/Virgo range for 30 M $_{\odot}$ PBHs if f_{PBH} ~ 0.001 - 0.01 [Riotto+], [Jedamzik 20], [Raidal+], etc...

In the LIGO/Virgo range for solar-mass PBHs f_{PBH} = 1 (e.g. GW190425) [Carr+19] [SC+20] [Jedamzik 20]

But: Issue with the rate of disrupted binaries ! (for monochromatic) slightly above LIGO/Virgo at ~solar-mass [Vaskonnen+19]

3. Are LIGO/Virgo black holes primordial? Merging rates

Early binaries

 $R^{\text{early}} = \frac{1.6 \times 10^6}{\text{Gpc}^3 \text{ yr}} f_{\text{sup}}(m_1, m_2, z) f_{\text{PBH}}^{53/37} f(m_1) f(m_2) \left[\frac{t(z)}{t_0}\right]^{-34/37}$ $\times \left(\frac{m_1 + m_2}{M_{\odot}}\right)^{-32/37} \left[\frac{m_1 m_2}{(m_1 + m_{\odot})^2}\right]^{-34/37}.$

03/2016: Sasaki et al (f_{sup}=1): f_{PBH} < 0.01 for m_{PBH} = 30 М⊙

2018-2020: Raidal et al., Hutsi et al.: $f_{sup} = 0.002$ if $f_{PBH} = 1$:

In LIGO/Virgo range for 30 M $_{\odot}$ PBHs if f_{PBH} ~ 0.001 - 0.01 [Riotto+], [Jedamzik 20], [Raidal+], etc...

In the LIGO/Virgo range for solar-mass PBHs f_{PBH} = 1 (e.g. GW190425) [Carr+19] [SC+20] [Jedamzik 20]

But: Issue with the rate of disrupted binaries ! (for monochromatic) slightly above LIGO/Virgo at ~solar-mass [Vaskonnen+19]

Late Binaries

$$R^{\text{late}}(m_1, m_2) = R_{\text{clust}} f(m_1) f(m_2) \, \frac{(m_1 + m_2)^{10/7}}{(m_1 m_2)^{5/7}} \, \text{yr}^{-1}$$

03/2016: Bird et al. standard halo mass function (no Poisson clustering): $R_{clust} = 1-10$ $f_{PBH} = 1$ possible for $m_{PBH} = 30$ sun

After GTC3: below LIGO/Virgo rates

03/2016: S.C + Garcia-Bellido **Enhanced clustering (UFDG): f**_{PBH} = **1** possible for **m**_{PBH} = **30 M**_☉ 2020: **Poisson clustering:** $R_{clust} = 100-700$ **f**_{PBH} = **1 leads to LIGO/Virgo rates at solar-mass scale** only allows f_{PBH} ~0.01 at 30 M_☉

3. Are LIGO/Virgo black holes primordial ? Merging rates

Summary and current status:

- Early and late binaries compete at similar level, due to Poisson clustering
- At 30 M_☉: f_{PBH} = 1 excluded by LIGO/Virgo (and other limits), but f_{PBH} ~ 0.01 - 0.1 plausible (as expected for a QCD transition)
- At 2-3 M_☉: f_{PBH} = 1 possible, both for early and late binaries, but the rate of disrupted binaries must be suppressed wrt [Vaskonen+19]

3. Are LIGO/Virgo black holes primordial? Masses 01 2015-2016 02 2016-2017

GWTC3 catalog 11/2021

03a+b 2019-2020

50 34 80 GW170729	• • 24 35 • 24 56 GW170809	• • 25 31 • 25 • 53 • 6W170814	• • 1.5 1.3 ● ≤2.8 GW170817	• • 27 35 27 60 6W170818	40 29 65 GW170823	• 88 • 22 105 GW190403_051519	• 25 GW1
107 77 175 GW190426_190642	43 28 69 6W190503_185404	• • 23 13 • 13 • 35 6W190512_180714	• 36 18 52 GW190513_205428	• • 28 39 • 28 65 GW190514_065416	• 37 25 59 6W190517_055101	66 41 41 101 GW190519_153544	95
• • 41 54 • 41 90 GW190701_203306	67 99 GW190706_222641	• • 12 8.4 • GW190707_093326	• • 18 13 • 13 • 30 • • • • • • • • • • • • • • • • • • •	• • 37 21 • 55 GW190719_215514	• • 13 7.8 • 20 GW190720_000836	• • 12 6.4 • 17 GW190725_174728	• 38 GW1
• • 32 26 55 6W190828_063405	• • 24 10 • 33 GW190828_065509	44 36 76 GW190910_112807	• 35 24 57 6W190915_235702	• • 24 44 24 66 GW190916_200658	• • 9.3 2.1 • 11 GW190917_114630	• • 8.9 5 • 13 GW190924_021846	• 21 GW1
65 47 107 GW191109_010717	• · 29 5.9 • 34 GW191113_071753	• • 12 8.3 • • • • • • • • • •	• 53 • 24 76 GW191127_050227	11 6.7 17 GW191129_134029	• • 27 19 • 45 GW191204_110529	12 8.2 19 GW191204_171526	• 25 GW1
• • 36 28 61 GW200112_155838	• 5.9 1.4 7.2 gw200115_042309	42 33 71 GW200128_022011	• • 34 29 60 6W200129_065458	10 7.3 17 GW200202_154313	• • 38 27 63 GW200208_130117	• • 51 12 61 GW200208_222617	36 GW2
40 33 1569 GW200224_222234	• • 19 14 • 32 gw200225_060421	• • • • • • • • • • • • • • • • • • •	• • 28 15 • 15 • 42 gw200306_093714	• • 36 14 • 14 • 47 • 6w200308_173609	• • 34 28 59 GW200311_115853	• • • • • • • • • • • • • • • • • • •	• 34 GW2

3. Are LIGO/Virgo black holes primordial? Masses 01 2015-2016 02 2016-2017

GWTC3 catalog 11/2021

3. Are LIGO/Virgo black holes primordial? Masses 01 2015-2016 02 2016-2017

BH progenitors in the low mass gap (2.5 to 5 M_☉) Mass uncertainties? 3.2 - BH vs neutron star? GW19042 - The mass gap hypothesis from observation of X-ray binaries, but no fundamental limitation 56 For PBHs: could be the transition from the proton peak to the pion bump 26 GW190814 19 61 **19** N191216 213338 **32** GW191219_163120 **76** w191222_033537 82 w191230_180458 W200105 16242 **GWTC3** catalog 11/2021 62 /200219_094/ 27 78 64 00210_092 0216 22 200220 061 200220 1248

03a+b 2019-2020

50 34 80 6W170729	• • 24 56 GW170809	• • • • • • • • • • • • • • • • • • •	1.5 1.3 ≤2.8 GW170817	• • • 27 • • 27 • • • • • • • • • • • • • • • • • • •	40 29 65 6W170823	• • 22 88 • 22 105 GW190403 051519	• 25 GW1
107 175 GW190426_190642	43 28 69 6W190503_185404	• • 23 13 • 35 GW190512_180714	• • 36 18 52 GW190513_205428	39 65 GW190514_065416	• • 37 25 59 GW190517_055101	66 41 101 GW190519_153544	95
54 41 90 GW190701_203306	67 99 GW190706_222641	• • 12 8.4 • 19 GW190707_093326	• • 18 13 • 30 GW190708_232457	• • 37 21 55 6W190719_215514	• • 13 7.8 • 20 GW190720_000836	• • 12 6.4 • 17 6W190725 174729	• 38 GW1
• • 32 26 55 GW190828_063405	• • 24 10 • 33 GW190828_065509	44 36 76 GW190910_112807	• • 35 24 57 GW190915_235702	44 24 66 GW190916_200658	• • 9.3 2.1 • 11 GW190917_114630	• • 8.9 5 • 13 GW190924_021846	• 21 6W1
65 47 107 GW191109_010717	• · 29 5.9 • 34 gw191113_071753	• • 12 8.3 • • • • • • • • • • • •	• • 24 53 • 24 76 GW191127_050227	11 6.7 17 GW191129_134029	• • 27 19 • 45 GW191204_110529	• • 12 8.2 19 GW191204_171526	• 25 GW1
• • 28 36 28 61 GW200112_155838	• 5.9 1.4 7.2 GW200115_042309	42 33 71 GW200128_022011	• • 34 29 60 GW200129_065458	10 7.3 17 GW200202_154313	• • 38 27 63 GW200208_130117	• • 51 12 61 GW200208_222617	36 GW2
40 33 1769 GW200224_222234	• • 19 14 32 GW200225_060421	• • 38 20 56 GW200302_015811	• • 28 15 • 15 • 42 gw200306_093714	• • 36 14 47 GW200308_173609	• • 28 34 28 59 GW200311_115853	• 13 7.8 20 GW200316_215756	• 34 GW2

3. Are LIGO/Virgo black holes primordial?

GWTC3 catalog 11/2021

Masses

			Late Binaries
Expected distribution of GW observations with O2 LIGO (L1) sensitivity		100	
B. Carr, S.C., J. Garcia- Bellido, F. Kühnel, 19'	m_2	10	1: peak of the distribution, seen NS mergers without em
Similar distributions for primordial binaries, but less mergers above ~20 solar masses		1	counterpart GW190425 q = 0.5

 $^{19}m_{1}$

1

3. Are LIGO/Virgo black holes primordial? $\chi_{\text{eff}} = [m_1 S_1 \cos(\theta_{\text{LS}_1}) + m_2 S_2 \cos(\theta_{\text{LS}_2})] / (m_1 + m_2)$

Spin of primary component for asymmetric mergers:

GW190814: < 0.07 GW191219...: <0.2 GW200210...: <0.4

A few: in some cases evidence for a non-zero effective spin

PBHs have zero spin initially but can acquire a low spin due to accretion/mergers [De Luca+20]

3. How to distinguish primordial vs stellar BHs? GW backgrounds [Bagui, SC, 2021]

Well above stellar BH predictions due to solar-mass-planetary-mass binaries At the limit of being detected by LIGO/Virgo ! Next: pop-corn vs continuous regimes...

Well above monochromatic/lognormal models due to IMBH-solar mass binaries Could explain a detection by **NANOGrav** ! Alternative: from 2nd order perturbations

3. How to distinguish primordial vs stellar BHs? Subsolar black holes

TABLE I. The candidates of the search with a SNR > 8 and a FAR $< 2 \text{ yr}^{-1}$. We report here the FAR, $\ln \mathcal{L}$, the UCT time of the event (date and hours), template parameters that pick the events and the associated SNRs.

$FAR [yr^{-1}]$	$\ln \mathcal{L}$	UTC time	mass 1 $[M_{\odot}]$	mass 2 $[M_{\odot}]$	spin1z	${ m spin}2{ m z}$	Network SNR	H1 SNR	L1 SNF
0.1674	8.457	2017-03-15 15:51:30	3.062	0.9281	0.08254	-0.09841	8.527	8.527	-
0.2193	8.2	2017-07-10 17:52:43	2.106	0.2759	0.08703	0.0753	8.157	-	8.157
0.4134	7.585	2017-04-01 01:43:34	4.897	0.7795	-0.05488	-0.04856	8.672	6.319	5.939
1.2148	6.589	2017-03-08 07:07:18	2.257	0.6997	-0.03655	-0.04473	8.535	6.321	5.736

Reanalysis of O2 data in 2105.11449 with updated merger rates and low mass ratios

A follow-up is ongoing with parameter estimations

f_{PBH} = **1** still allowed by subsolar searches

3. How to distinguish primordial vs stellar BHs? **Subsolar black holes**

TABLE I. The candidates of the search with a SNR > 8 and a FAR < 2 yr^{-1} . We report here the FAR, $\ln \mathcal{L}$, the UCT time of the event (date and hours), template parameters that pick the events and the associated SNRs.

$FAR [yr^{-1}]$	$\ln \mathcal{L}$	UTC time	mass 1 $[M_{\odot}]$	${ m mass} 2 [M_\odot]$	spin1z	spin2z	Network SNR	H1 SNR	L1 SNF
0.1674	8.457	2017-03-15 $15:51:30$	3.062	0.9281	0.08254	-0.09841	8.527	8.527	-
0.2193	8.2	2017-07-10 17:52:43	2.106	0.2759	0.08703	0.0753	8.157	-	8.157
0.4134	7.585	2017-04-01 01:43:34	4.897	0.7795	-0.05488	-0.04856	8.672	6.319	5.939
1.2148	6.589	2017-03-08 07:07:18	2.257	0.6997	-0.^^^	0 0 4 4 7 9	OFOF	0 001	F 790
						l	_imits for a monochro	omatic distrib	ution
Reanalysis	of O2	data in 2105.11449							EB
with updated merger rates and low mass ratios					10				LB
A follow-up is ongoing with parameter estimations									LVC
		5 5			CC				
$f_{PBH} = 1$ still allowed by subsolar searches					%06	-			
					3H ((1 =			
					fPI				
					0.1	10			
					0.0	1			
					0.0	0.2	0.4 0.6	; <u> </u>	.8
				22			<i>m</i>	Mol	
							I PBH L	1001	

gaussian fluctuations...

Specific PBH mass or abundance generally requires fine-tuning but more natural scenarios recently emerged: QCD transition, baryogengesis, non-

- gaussian fluctuations...
- Both clues and limits for $f_{PBH} = 1$ at the solar-mass scale

 Specific PBH mass or abundance generally requires fine-tuning but more natural scenarios recently emerged: QCD transition, baryogengesis, non-

- gaussian fluctuations...
- Both clues and limits for fpbH = 1 at the solar-mass scale
- (yet?) fully convincing

 Specific PBH mass or abundance generally requires fine-tuning but more natural scenarios recently emerged: QCD transition, baryogengesis, non-

• **GW observations** (rate, masses, spins, background) are very intriguing, but not

- gaussian fluctuations...
- Both clues and limits for $f_{PBH} = 1$ at the solar-mass scale
- (yet?) fully convincing
- **Strong statements are still premature**

 Specific PBH mass or abundance generally requires fine-tuning but more natural scenarios recently emerged: QCD transition, baryogengesis, non-

• **GW observations** (rate, masses, spins, background) are very intriguing, but not

• Complex phenomenology: formation, clustering, accretion, mergers, etc...

- gaussian fluctuations...
- Both clues and limits for $f_{PBH} = 1$ at the solar-mass scale
- (yet?) fully convincing
- **Strong statements are still premature**
- existence of PBHs... 4 candidates already found. Stay tuned!

 Specific PBH mass or abundance generally requires fine-tuning but more natural scenarios recently emerged: QCD transition, baryogengesis, non-

• **GW observations** (rate, masses, spins, background) are very intriguing, but not

• Complex phenomenology: formation, clustering, accretion, mergers, etc...

Common agreement: finding subsolar black holes is the best way to prove the

4. Our playground PBH cluster size-mass relation

4. Our playground **PBH cluster evaporation**

Compact clusters evaporate and are not single lenses: Petac, Lavalle, Jedamzik, 2201.02521 Evaporation time: $t_{\rm evap} \sim 140 t_{\rm relax} \sim \frac{14 N_{\rm pbh}}{\log N_{\rm pbh}} t_{\rm cross}$ Crossing time: $t_{\rm cross} \sim r_{\rm cl}/v_{\rm cl}$

Monte-Carlo simulations: **microlensing limits are solid!**

4. Our playground Lensing + microlensing effect

Compact clusters act as lenses and suppress the magnitude of superimposed microlensing:

Carr, Clesse, Garcia-Bellido, Kühnel, 1906.08217 Gorton & Green, 2203.04209

4. Our playground Lensing + microlensing effect

Compact clusters act as lenses and suppress the magnitude of superimposed microlensing:

Carr, Clesse, Garcia-Bellido, Kühnel, 1906.08217 Gorton & Green, 2203.04209

Deflection angle: $\alpha(\zeta) = \frac{4 G M(\zeta)}{c^2 \zeta} \approx 2 \times 10^{-13} \left(\frac{M_{\rm cl}}{M_{\odot}}\right) \left(\frac{\rm pc}{R_{\rm cl}}\right)$

Distance point source -> Einstein arc $L_{\rm arc} \sim \alpha D_{\rm cl}$

Einstein radius of the (micro-)lens:

$$R_{\rm E} = 2 \sqrt{G m_{\rm PBH} x (1-x)} \frac{D_{\rm cl}}{c^2}$$
$$\sim 10^{-5} \,\mathrm{pc} \left(\frac{m_{\rm PBH}}{M_{\odot}} \frac{D_{\rm cl}}{\rm kpc}\right)^{1/2}$$

Magnitude of the microlensing event suppressed if

$$L_{\rm arc} > R_{\rm E}$$

Microlensing limits apply to Poisson clusters up to 10⁶ solar masses

4. Our playground Lensing + microlensing effect

Compact clusters act as lenses and suppress the magnitude of superimposed microlensing:

Carr, Clesse, Garcia-Bellido, Kühnel, 1906.08217 Gorton & Green, 2203.04209

Deflection angle: $\alpha(\zeta) = \frac{4 G M(\zeta)}{c^2 \zeta} \approx 2 \times 10^{-13} \left(\frac{M_{\rm cl}}{M_{\odot}}\right) \left(\frac{\rm pc}{R_{\rm cl}}\right)$

Distance point source -> Einstein arc $L_{\rm arc} \sim \alpha D_{\rm cl}$

Einstein radius of the (micro-)lens:

$$R_{\rm E} = 2 \sqrt{G m_{\rm PBH} x (1-x)} \frac{D_{\rm cl}}{c^2}$$
$$\sim 10^{-5} \,\mathrm{pc} \left(\frac{m_{\rm PBH}}{M_{\odot}} \frac{D_{\rm cl}}{\rm kpc}\right)^{1/2}$$

Magnitude of the microlensing event suppressed if

$$L_{\rm arc} > R_{\rm E}$$

Microlensing limits apply to Poisson clusters up to 10⁵ - 10⁶ solar masses

4. Our playgroundDynamical heating

Compact clus

Brandt, 1605.03665 Green, 1609.01143 S.C, Garcia-Bellido, 1711.10458

Increase of the cluster radius with time:

$$\frac{\mathrm{d} r_{\mathrm{cl}}}{\mathrm{d} t} = \frac{4\sqrt{2} \pi G f_{\mathrm{PBH}} m_{\mathrm{PBH}} \ln\left(\frac{m_{\mathrm{cl}}}{2 m_{\mathrm{PBH}}}\right)}{2 \beta v_{\mathrm{vir}} r_{\mathrm{cl}}}$$

Poisson fluctuation = isocurvature fluctuation

$$\delta = \frac{1}{\sqrt{N}} \times \left(\frac{1+z_{\rm eq}}{1+z}\right)$$

Redshift of formation, when $\delta \approx \delta_{\rm cr} \approx 1.68$:

$$z_{\rm form} + 1 \simeq 3.7 \times 10^{-3} k^{-3/2} \left(\frac{m_{\rm PBH}}{M_{\odot}}\right)^{-1/2}$$

 $\simeq 24 \times \left[\frac{10^6 m_{\rm PBH}}{m_{\rm cl}}\right]^{1/2}$.

Very early (cf. N-body simulation)

4. Our playgroundDynamical heating

Compact clus

Brandt, 1605.03665 Green, 1609.01143 S.C, Garcia-Bellido, 1711.10458

Increase of the cluster radius with time:

$$\frac{\mathrm{d} r_{\mathrm{cl}}}{\mathrm{d} t} = \frac{4\sqrt{2} \pi G f_{\mathrm{PBH}} m_{\mathrm{PBH}} \ln\left(\frac{m_{\mathrm{cl}}}{2 m_{\mathrm{PBH}}}\right)}{2 \beta v_{\mathrm{vir}} r_{\mathrm{cl}}}$$

Poisson fluctuation = isocurvature fluctuation

$$\delta = \frac{1}{\sqrt{N}} \times \left(\frac{1+z_{\rm eq}}{1+z}\right)$$

Redshift of formation, when $\ \delta \approx \delta_{\rm cr} \approx 1.68$:

$$z_{\rm form} + 1 \simeq 3.7 \times 10^{-3} k^{-3/2} \left(\frac{m_{\rm PBH}}{M_{\odot}}\right)^{-1/2}$$

 $\simeq 24 \times \left[\frac{10^6 m_{\rm PBH}}{m_{\rm cl}}\right]^{1/2}$.

Very early (cf. N-body simulation)

4. Our playground Probability of collapse

Almost 100% of fluctuations collapse up to $10^7 M_{\odot}$ Sub-sub halos diluted in their sub halo Natural clustering scale around $10^7 M_{\odot}$ S.C, Garcia-Bellido, 2007.06481

Fraction of (Poisson) fluctuations that collapse, in the Press-Schechter formalism:

$$F(m_{\rm cl}) \approx {\rm erfc} \left[\frac{\delta_{\rm cr}}{\sqrt{2}\delta_{\rm Poisson}} \right]_{m_{\rm cl}}$$

4. Our playground Probability of collapse

Almost 100% of fluctuations collapse up to $10^7 M_{\odot}$ Sub-sub halos diluted in their sub halo Natural clustering scale above $10^7 M_{\odot}$ S.C, Garcia-Bellido, 2007.06481

Fraction of (Poisson) fluctuations that collapse, in the Press-Schechter formalism:

$$F(m_{\rm cl}) \approx {\rm erfc} \left[\frac{\delta_{\rm cr}}{\sqrt{2}\delta_{\rm Poisson}} \right]_{m_{\rm cl}}$$

4. Our playground Heating of the galactic disk

Clusters dynamically heat the galactic disk Clue or limit ?

Carr & Lacey, 1987

$$m_{\rm cl} < 3 \times 10^6 M_{\odot}$$

for all dark matter made of subhlos

Most of dynamically heated **Poisson PBH clusters would have** too much heated the galactic disk => excluded

4. Our playground **Initial cluster size**

For dynamical heating, we assumed negligible initial size...

Size of the cluster at formation, in the theory of spherical collapse: (when cluster density 178 times background density)

$$r_{\rm cl} \simeq 135 \,{\rm pc} \, \left(\frac{m_{\rm PBH}}{M_{\odot}}\right)^{1/2} \left(\frac{m_{\rm cl}}{10^6 M_{\odot}}\right)^{-1/6}$$

But then, microlensing limits apply !!!

You are back to your starting point...

4. Our playground **Broad PBH mass function**

If PBHs explain LIGO/Virgo black holes they also seed Poisson clusters

Poisson fluctuations:

$$\delta \propto \int m_{\rm PBH} f_{\rm PBH} f(m_{\rm PBH}) d\ln m_{\rm PBH} \sim 10 - 10$$

but still, PBH peak around 3 M_o

We get a minimal clustering scale around 10⁵-10⁶ M_O

00

4. Our playground **Collisional/tidal disruption**

If clusters are too large: Carr & Lacey, 1987

- Disruption by the galactic tidal field:

$$r_{\rm cl} \lesssim 100 {\rm pc} \left(\frac{m_{\rm cl}}{10^6 M_{\odot}} \right)^{1/3}$$

- Tidal shocking when they traverse the galactic disk: $r_{\rm cl} \lesssim 30 {
m pc} \left(\frac{m_{\rm cl}}{10^6 M_{\odot}} \right)^{1/3}$

- Disruption by collisions between clusters:

$$r_{\rm cl} \lesssim 30 {\rm pc}$$

all this, if they are the dark matter and at our galactocentric radius

Minimal -> Natural clustering scale around 10⁵-10⁶ M_O

4. Our playground **Observations of UFDGs**

Ultra-faint dwarf galaxies Brandt 2017, Simon 2019...

Naïve estimation : Half light radius vs dynamical mass from the Virial theorem

 Minimum size and mass of UFDGs could be explained by dynamical heating (Clesse, Garcia-Bellido 2017)

 Large mass-to-light ratios could be explained by **PBH accretion** (Clesse, Garcia-Bellido 2017)

 High-redshift formation could explain spatial correlations between X-ray and infrared **backgrounds** (Kashlinsky 2016)

Many UFDGs expected below the detection limit

No clusters in the galactic center

