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* Augmenting physical knowledge with Machine Learning
* Methods and models

e Quantitative characterization of phase transitions with Machine
Learning

* Deriving new observables with Machine Learning
* Inverting the renormalization group flow with Machine Learning
 Summary and perspectives
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Machine Learning for Phase Transitions

Recent and current problems investigated include

* Can a Machine Learning algorithm detect a phase transition?

* Which algorithms are “better”?

* Can we find the order parameter?

e Can we reconstruct the symmetry that drives the transition?

* To which precision can we determine the transition temperature?

* With which accuracy can we measure quantities such as critical
exponents?

e Can we see the features (e.g, topological excitations) that are relevant for
the transition?

* Can machine learning invert the Renormalisation Group flow?
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The Ising Model in D=2 dimensions T e
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@ Popular testbed for new numerical approaches, as it has analytic solution at 7 = 0
@ Variables: spins o; = +1 distributed on a L? grid
@ Hamiltonian

HZ—jZO’iJj—hZJi, J >0 //

(is) i

|
Zy symmetry o; — —o; / / /
/

@ Partition function at temperature T / / / /
S N A
{oi==x1}

For h = 0 phase transition at 7, = = 2.2691853. ..

2
k(log(1+v/2))
@ Phase transition driven by spontaneous breaking of Z, symmetry, with order parameter

1 _ 1
m = ﬁ Z o;e BH = l7<z O'l'>
{oi==%1} i

ForL — oco,m#0OforT < T.,whilem =0forT > T,
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The Ising critical point

@ At L = oo the magnetic susceptibility has a divergence at 7.:

1 ? _
X= <<(2ijal~) =] 17Tl

@ At finite volume, the latter singularity gets smoothened down into a peak xmax(7.(L)) and

_1 t
Te(L) = Te| o< L™ v, xmax (Tc(L)) o< LV

@ Finite size scaling: extract v and v from the variation with L of xmax(7¢(L))
The other critical exponents can be derived from scaling relations

Fisher Law: vy=v(2—n),
Widom Law: vy=p06(6-1),
Rushbrooke Law: a+28+~v=2,

Josephson Law: vd=2-—«,
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The self-interacting scalar field in D=2

e Action

. Zqﬁz@ R

7 7

* We fix k. = 1and find a line of critical points, depending on the ratio
AL/ug

 We consider the reference critical values

A =07,  p7 =—0.95153(16)

[D. Schaich, W. Loinaz, arXiv:0902.0045]



Convolutional Neural Networks
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Exposing the phase structure
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* Neural Network trained on a square lattice
* Critical temperature on the triangular lattice determined at the permille level (finite size shift?)

[Carrasquilla and Melko, Nature Physics volume 13, pages 431-434 (2017), arXiv:1605.1735]
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Summary of other results TR [ifveao

* Critical exponents reproduced with very good accuracy

Method T, v X2 ~v/v X2
o 2.26922(33) 1.004(48) 0.36 | 1.7634(68) 0.46
Reweighting
2.26925(11) 1 (exact) 0.3 | 7/4 (exact) 0.66
2.26968(66)  0.95(18)  0.79 1.733(10) 1.54
SVM
(

2.26954(25) 1 (exact) 0.65 | 7/4 (exact) 2.06

* The machine learning method (SVM) finds the (square of the)
magnetization as the decision function

* The symmetry is encoded in the kernel transformation
* Independence of the (sensibly chosen) training temperatures
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NN trained away from the phase transition: § < 0.41 and § = 0.47

The probability of classification reweighted using a single point agrees with direct measurement
=) this probability is a thermodynamic observable!

T T S @ 1

|
Reweightin

N P(CNN) & . 0.9 T -3

i T 0.8 - -

- 0.18 - 0.7 T i

- 0.16 . S 05F T -

- 0.4355  0.4365 088 F /74 A Voooaf 7T ]
0.86 -// s 0.3 |

0.4415 0.4425 | 0.2
- 0.1

| | 0

0.428 0.432 0.436 0.44 0.444 0.448 0.4396 0.44 0.4405 0.441 0.4415 0.442

B B

[D. Bachtis, G. Aarts and B. Lucini, Phys. Rev.E 102 (2020) 3, 033303, arXiv:2004.14341]
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A Convolutional Neural Network trained on Ising 2D can locate the order-disorder transition in other spin models



Towards interpretability: activation TR [k

functions in NN &L Sueanses
4
| disordered
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Universal features distinguish ordered and disordered phases, irrespective of e.g. order of
transition



symmetry-broken symmetric

) 1.0 T T T T PR
d* scalar field theory T
A 0.6 -
Vooal .
* reweight in mass parameter, u? oo L ]
’ Identlfy reglons Where phase IS Clear 0.?1.02 -1.100 -0.198 -0.196 -0.194 -0.192 -0.190 -0.88
e retrain NN using u? < —1.0 and u? > —0.9 &

-0.949

-0.9495

-0.95

-0.9505

-0.951

-0.9515

-0.952

-0.9525

-0.953

repeat finite-size scaling analysis as in 2d Ising model

pe % v/v
CNN-+Reweighting  -0.95225(54)  0.99(34)  1.78(7)

* same universality class as 2d Ising model
* critical mass in agreement with results

0.002

0.004 0.006 obtained with standard methods

1L (Binder cumulant, susceptibility)
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Coupling T to the Hamiltonian

Define an observable variable Y conjugated to f and write an extended Hamiltonian

Ey =E-VfY

Now f can be computed using path integral methods

1 0lmzZy ), foexp|—BE, + BV f5Y]
BV oY > _exp|—BE, + BV f,Y]

(f)

Note that Y define a new direction for reweighting and that reweighting in this
direction does not require the knowledge of E,
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Induced phase transition
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Critical exponents calculated with Renormalisation Group methods
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Bc 174 QY, 0
RGINN  0.44063(21)  1.01(2) Oy = 0.534(3)
Exact In(1+/2)/2 1 6 =8/15

|
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0.45 ----

-0.004

0.004

f allows access to the magnetic
critical exponent 6
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The Inverse Renormalisation Group

Purpose: generating configurations on larger lattices starting from smaller
ones near criticality with negligible computational cost

Not a new idea, e.g.

* R.H. Swendsen, Phys. Rev. Lett., 42:859—-861 (1979)

* D. Ron, R.H. Swendsen, and A. Brandt, Phys. Rev. Lett., 89:275701 (2002)
 S. Efthymiou, M.J.S. Beach, and R.G. Melko, Phys. Rev. B, 99:075113, (2019)
e S-H. Li and L. Wang, Phys. Rev. Lett., 121:260601 (2018)

K. Shiina, H. Mori, Y. Tomita, H.K. Lee, and Y. Okabe, Scientific Reports,
11(1):9617 (2021)

Our work presents the first IRG calculation for a Quantum Field Theory
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How the Renormalisation Group works 3% e
[Adapted from https://blog.dougashton.net/2012/04/the-renormalisation-group/, video released under CC BY-SA 4.0] University
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https://blog.dougashton.net/2012/04/the-renormalisation-group/
http://creativecommons.org/licenses/by-sa/4.0/

How we expect the IRG to work

[Adapted from https://blog.dougashton.net/2012/04/the-renormalisation-group/, video released under CC BY-SA 4.0]

T = 0.997 T, T'=1; T =1.003 T,
b=170 L =131072 b=170 L =131072 b=170 L =131072
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e Overcome critical slowing down T X &
* More precise calculations of observables at criticality

* Better insights on the infrared dynamics of the model

e Can grow the lattice size indefinitely

L1 =0bLg




Known problem: the RG is not invertible
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To invert the RG, we would need to grow the number of degrees of freedom,
but the process is not unique

E.g., for a blocked spin equal to +1 possibilities (majority rules) include

+1

+1

-1

+1

+1

-1

+1

+1

-1 |+

Even worse for the scalar field, e.g.

0.01

0.36

0.02

0.01

+1 | -1

-1

+1

+1

-1

-421.1

90.1

0.5

330.9

compatible with a blocked spin value 0.4
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What we mean by inverting the RG then?

* We start from a set of configuration generated via a Monte Carlo on a
lattice of size L

e Using a Machine Learning algorithm, from those we derive a set of
configurations on a lattice L' = b L (typically, b=2)

* We assume that the ensemble at L’ as distributed according to the
Boltzmann measure at L

* This enables us to compute (and to reweight!) observables at L
* Using crossing of curves, we compute critical quantities
Advantage: numerical effort done on small lattices, hence relatively cheap

Critical to the process: blocking method, ML algorithm and assumption of
Boltzmann distribution
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The blocking method

* Given a block B with generic point i, consider

so_ Siep0000) T 0000
® 7 s 00(1)) P i 0(-6(0)

* Now, set

OB = OLO(dL + o5) + d50(—0F — d5)

* This is equivalent to the majority rule in the Ising model
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Central concept: transposed convolution

Transposed convolutions
Compare

Input

Transformations

Output



Determining the direction of the RG flow

 Comparison with directly
simulated lattices show that
in the augmented system the
coupling flows towards the
critical point

* Plotting two different lattice
sizes (no need for direct
simulation!) the crossing
identifies an estimate for the
critical coupling
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0.45
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0.9525 .0.9515  -0.9505
u2
0.42 T
L=512
0.41 gt
0.4 F §
0.39 F 5
0.38 F -
0.37 } .
0.36 L
-0.9525 0.9515  -0.9505
w2
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Determining critical quantities

We can rewrite the scaling relationships for the magnetisation

m; ~ [t;|P m; ~ |t;|P

in terms of the correlation length
Tn'i - 62_5/1/ 7nj ~ é;—B/V

to obtain the operational definition of the critical exponent ratio

dm dm

B In dms | K. In Tl ’ K.

v ln% (j —1)Inbd

Similarly, from X we get /v
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Critical exponents

Method: configurations obtained with

a simulation for L=32 and IRG 76— I
augmentation up to L=512 i ::: .......... % ...... %% ...... % ...... %¥ ....... % ...... %%:
Ratios of critical exponents extracted e % .
for pairs of lattices S T T S S N R R N
0.135_— L0=32 __
Expected asymptotic approach to 5 o % % % % % _
Ising values clearly observed 0125 e e b b b5

| | | | | | | | | |
12
0 32/64 32/128 32/256 32/512 64/128 64/256 64/512 128/256 128/512 256/512

All with no critical slowing down! 1L
i
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Conclusions and Outlook

* Machine Learning offers a novel angle to look at phase transitions

* It enables precise calculations of critical properties with no assumed
knowledge on the underlying symmetry

* Machine Learning exposes nhovel observables, whose behaviour can
offer insights on the dynamics of the phase transition

* A powerful demonstrator of the potential of Machine Learning is the
Inverse Renormalisation Group

* Future work focusing on interpretability

* Related work ongoing to derive more efficient and interpretable
Machine Learning methods from Quantum Field Theories
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The video on the RG in slide 17 is adapted from

https://blog.dougashton.net/2012/04/the-renormalisation-group/
removing the explanatory first part.

The video on the IRG in slide 18 is obtained playing backward the video
in slide 17.

Both videos are released under the CC BY-SA 4.0.
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