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Overview

• Augmenting physical knowledge with Machine Learning
• Methods and models
• Quantitative characterization of phase transitions with Machine 

Learning
• Deriving new observables with Machine Learning
• Inverting the renormalization group flow with Machine Learning
• Summary and perspectives



Machine Learning for Phase Transitions

Recent and current problems investigated include 
• Can a Machine Learning algorithm detect a phase transition? 
• Which algorithms are “better”? 
• Can we find the order parameter? 
• Can we reconstruct the symmetry that drives the transition? 
• To which precision can we determine the transition temperature? 
• With which accuracy can we measure  quantities such as critical 

exponents? 
• Can we see the features (e.g, topological excitations) that are relevant for 

the transition? 
• Can machine learning invert the Renormalisation Group flow?
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The 2D Ising model
Formulation of the problem

Popular testbed for new numerical approaches, as it has analytic solution at h = 0
Variables: spins �i = ±1 distributed on a L

2 grid
Hamiltonian
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X
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Partition function at temperature T
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Phase transition driven by spontaneous breaking of Z2 symmetry, with order parameter
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For L ! 1, m 6= 0 for T < Tc, while m = 0 for T > Tc



The Ising critical point
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The 2D Ising model
Finite size scaling

At L = 1 the magnetic susceptibility has a divergence at Tc:
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At finite volume, the latter singularity gets smoothened down into a peak �max(Tc(L)) and

|Tc(L) � Tc| / L
�

1
⌫ , �max(Tc(L)) / L

�
⌫

Finite size scaling: extract � and ⌫ from the variation with L of �max(Tc(L))

The other critical exponents can be derived from scaling relations

Fisher Law: � = ⌫(2 � ⌘) ,

Widom Law: � = �(� � 1) ,

Rushbrooke Law: ↵ + 2� + � = 2 ,

Josephson Law: ⌫d = 2 � ↵ ,



The self-interacting scalar field in D=2

• Action

• We fix               and find a line of critical points, depending on the ratio 

• We consider the reference critical values
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FIG. 2. Absolute value of the magnetization versus the
dimensionless squared mass. L0 denotes a system produced
with the standard renormalization group approach which re-
duces the size of the system. The region bounded by the lines
denotes the statistical uncertainty.

Following a similar procedure for the magnetic suscep-
tibility �i ⇠ |ti|�� and �j ⇠ |tj |�� we obtain:

�

⌫
=

ln d�j

d�i

��
Kc

ln ⇠j
⇠i

=
ln d�j

d�i

��
Kc

(j � i) ln b
. (10)

Using the above equations and the renormalization
group, one can calculate critical exponents through nu-
merical derivatives of the observables m and � in the
vicinity of the critical point Kc.

Inverse renormalization in the �
4 theory. We con-

sider the discretized two-dimensional �4 scalar field the-
ory on a square lattice with the lattice action [1]:

S = �L

X

hiji

�i�j+
(µ2

L + 4L)
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X

i

�
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i+

�L

4

X

i

�
4
i . (11)

Here L, µ2
L, �L are dimensionless parameters. The sys-

tem undergoes a second-order phase transition between
a symmetric and broken-symmetry phase for specific val-
ues of µ2

L < 0 when �L > 0 and L > 0 [17]. We will
consider the case �L = 0.7, L = 1 and vary the coupling
constant µ2

L ⌘ K. We simulate the system using a com-
bination of the Metropolis and Wol↵ algorithms [18–21],
and the errors are calculated with a binning analysis us-
ing 104 configurations in 10 separate bins. Observables
of interest are the magnetization M = |

P
i �i|, and the

magnetic susceptibility � = (1/V )(hM2i�hMi2). We de-
note as m = (1/V )M the intensive magnetization which
is normalized by the size of the system V = L⇥ L.

Starting from a �
4 theory with lattice size L = 32

in each dimension, we first apply a standard renormal-
ization group transformation with b = 2 on configura-
tions sampled at µ

2
L = �0.9515 in the vicinity of the

phase transition to produce a rescaled system with size
L
0 = 16. Specifically the transformation consists of sepa-

rating the system in blocks of size b⇥b, where the degrees
of freedom are summed within each block. If the sum is
positive or negative then we select the rescaled degree of
freedom as the mean of the positive or negative degrees

of freedom within the block, respectively. Since the lat-
tice size is halved the correlation length will be reduced
similarly, ⇠0 = ⇠/2. The emergent renormalization group
flow then drives the system away from the critical point
towards either the broken-symmetry or the symmetric
phase, depending on where the system was initially posi-
tioned in. This implies that if the original system had a
certain magnetization m then the rescaled system will
have magnetization m

0
> m (m0

< m) if it was ini-
tially in the broken-symmetry (symmetric) phase. The
results, obtained with the use of histogram reweighting,
are depicted in Fig. 2 where the standard renormalization
group flow and a critical fixed point have emerged.

Every successful standard renormalization group
transformation encodes important information. First,
that the original and the rescaled systems are an accurate
representation of the same physical model. Second, that
configurations of the rescaled system follow the probabil-
ity distribution of the original system, and, third, that a
critical fixed point structure exists at criticality. We have
verified, through the obtained results, that the standard
renormalization group transformation, implemented as
above, satisfies these conditions. By learning how to
mimic the inversion of this transformation we anticipate
that the same conditions will additionally be satisfied on
the inverse transformation. The inverse transformation
can then be iteratively applied to arbitrarily increase the
size of the system.

To mimic the inversion of a transformation we will rely
on the application of a set of transposed convolutions [22],
which can be easily implemented, for instance, via the
Keras library [23]. Details can be found in the Supple-
mental Material [24]. The input system to the transposed
convolutions is the rescaled system with size L0 = 16 and
the output is a system with size L = 32 which is equal to
the original. We remark that the inverse transformation
is not anticipated to be a perfect inversion of the origi-
nal one. Importantly, the set of transformations have no
dependence on the size of the system and can therefore
be applied to any arbitrary size L.

We will now apply the inverse transformations to it-
eratively increase the lattice size by a factor of b = 2
through the relation of Eq. 3. We anticipate that the iter-
ative increase in the lattice size will also equally increase
the correlation length (see Eq. 4), under the condition
that there exists some finite correlation length present
in the initial configurations, therefore driving the sys-
tem towards the critical point irrespective of the phase
that it is initially positioned in. This implies that if the
original system had magnetization m then the rescaled
system will have magnetization m

0
< m (m0

> m) if it
was initially in the broken-symmetry (symmetric) phase,
respectively. The results are depicted in Fig. 3. We ob-
serve, based on the intersection of observables (see Eq. 6),
that the critical fixed point agrees with the expected val-
ues of µ2

c = �0.95151(25)[19], µ2
c = �0.9516(8)[20], and

that the anticipated behaviour of the inverse flows in pa-
rameter space has emerged. The previous results, which

κL = 1

λL/µ
2

L

λL = 0.7 , µ2

L = −0.95153(16)

[D. Schaich, W. Loinaz, arXiv:0902.0045]



Convolutional Neural Networks
33

Figure 3.2: The architecture of the convolutional neural network. A set of labeled
configurations from each distinct phase are given as input to the neural network in
order to learn the optimal function f(�i) that is able to accurately predict the phase
of a configuration �i.

can obviously obtain the probability P
(s) of a configuration being in the symmetric

phase via 1� f(�i).
The interpretation of machine learning functions as statistical-mechanical observ-

ables is then an implication of the following observation. The convolutional neural
network function f(�i), which has been calculated on a configuration drawn from an
equilibrium distribution via a series of transformations, see Fig. 3.3, is a physically
meaningful quantity: it has been learned on a set of importance-sampled configura-
tions of the Ising model and it expresses the probability that the configuration �i

is associated with the broken-symmetry phase. Furthermore, the unknown config-
uration �i is additionally drawn from an equilibrium distribution p(�i; �) and it is
therefore associated with its own corresponding Boltzmann weight of a specific in-
verse temperature �. As a result f(�i) is described by the same Boltzmann weight
as the configuration �i and is a statistical-mechanical observable. Equivalently, the
expectation value of the neural network function is:

hfi =
X

�

f�p(�; �). (3.8)

An important observation is that the expectation value hfi of the convolutional
neural network function f is expressed as a sum over all possible states � of the
system, weighed by the associated Boltzmann distribution, and as as a result the



Exposing the phase structure
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• Neural Network trained on a square lattice
• Critical temperature on the triangular lattice determined at the permille level (finite size shift?)

[Carrasquilla and Melko, Nature Physics volume 13, pages 431–434 (2017), arXiv:1605.1735]



Summary of other results

• Critical exponents reproduced with very good accuracy

• The machine learning method  (SVM) finds the (square of the) 
magnetization as the decision function
• The symmetry is encoded in the kernel transformation
• Independence of the (sensibly chosen) training temperatures

[C. Giannetti, B. Lucini and D. Vadacchino, Nucl.Phys.B 944 (2019) 114639, arXiv:1812.06726] 
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Comparison with Multi Histogram

For 200 configurations obtained with the Wolff algorithm. . .

Method Tc ⌫ �2
r

�/⌫ �2
r

Reweighting
2.26922(33) 1.004(48) 0.36 1.7634(68) 0.46

2.26925(11) 1 (exact) 0.3 7/4 (exact) 0.66

SVM
2.26968(66) 0.95(18) 0.79 1.733(10) 1.54

2.26954(25) 1 (exact) 0.65 7/4 (exact) 2.06



Probability of classification as an
observable
NN trained away from the phase transition: 𝛽 ≤ 0.41 and 𝛽 ≥ 0.47
The probability of classification reweighted using a single point agrees with direct measurement                         

this probability is a thermodynamic observable!

[D. Bachtis, G. Aarts and B. Lucini, Phys. Rev.E 102 (2020) 3, 033303, arXiv:2004.14341] 



Transfer learning
[D. Bachtis, G. Aarts and B. Lucini, Phys.Rev.E 102 (2020) 5, 053306, arXiv:2007.00355] 

A Convolutional Neural Network trained on Ising 2D can locate the order-disorder transition in other spin models



Towards interpretability: activation 
functions in NN

disordered

ordered

Universal features distinguish ordered and disordered phases, irrespective of e.g. order of 
transition   



ɸ! scalar field theory 

• reweight in mass parameter, 𝜇!

• identify regions where phase is clear
• retrain NN using 𝜇! < −1.0 and  𝜇! > −0.9
• repeat finite-size scaling analysis as in 2d Ising model

symmetry-broken symmetric

• same universality class as 2d Ising model
• critical mass in agreement with results 

obtained with standard methods 
(Binder cumulant, susceptibility)



Coupling f to the Hamiltonian
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FIG. 1. The architecture of the fully-connected neural network. A renormalization group mapping is established between an
original and a rescaled system based on the predictive function of the neural network.

II. NEURAL NETWORKS AS HAMILTONIAN
TERMS

We consider a statistical system, such as the Ising
model (see Appendix A), which is described by a Hamil-
tonian E. The equilibrium occupation probabilities of
the system are of Boltzmann form and are given by:

p� =
exp[��E�]P
� exp[��E�]

, (1)

where � is the inverse temperature, � a state of the
system and Z =

P
� exp[��E�] the partition function.

When the system is in equilibrium the expectation value
of an arbitrary observable O is:

hOi =
P

� O� exp[��E�]P
� exp[��E�]

. (2)

After a neural network is trained on a system for phase
classification (see Appendix B and Fig. 1), the learned
neural network function f(·) can be applied to a con-
figuration �, converting f� into a statistical mechanical
observable with an associated Boltzmann weight [33]. In
addition, we consider f� as equivalent to the conditional
probability f� ⌘ P

b
� that a configuration belongs in the

broken-symmetry phase. Consequently, f� is an intensive
quantity bound between [0, 1] and since it has no depen-
dence on the size of the system we can multiply it with
the volume V and recast V f� as an extensive property.

We are now able to investigate the extensive neural
network function V f by introducing it in the Hamilto-
nian of the system. Fields that interact with a system
have conjugate variables which represent the response
of the system to the perturbation of the corresponding
field. We therefore consider V f as a conjugate variable
that couples to an external field Y and define a modified
Hamiltonian:

EY = E � V fY. (3)

The expectation value of the neural network function
can then be expressed as a derivative of the modified
partition function ZY in terms of the field:

hfi = 1

�V

@ lnZY

@Y
=

P
� f� exp[��E� + �V f�Y ]P
� exp[��E� + �V f�Y ]

. (4)

Setting the neural network field Y to zero results in the
standard definition of Eq. (2). Nevertheless, a derivation
of Eq. (4) in terms of the field gives:

�f =
@hfi
@Y

= �V (hf2i � hfi2). (5)

The quantity �f is recognized as a susceptibility. It is
a measure of the response of the predictive function f to
changes in the neural network field Y . Consequently, the
opportunity to study the e↵ect of a non-zero field Y 6= 0
in the statistical system is now available. One way to
achieve this is to conduct Monte Carlo sampling using
the modified Hamiltonian of Eq. (3) to obtain configu-
rations of this modified system. However, an alternative
option that overcomes the need for sampling is the use of
histogram reweighting [34, 35], where machine learning
derived observables can also be reweighted in parameter
space [33].

III. SYMMETRY BREAKING AND
RESTORATION

Consider a set of N obtained configurations �i from a
system whose explicit form of the Hamiltonian E is not
known. These configurations have been drawn from an
equilibrium distribution, described by Eq. (1), and can
be utilized with reweighting to predict the behaviour of
the modified system, when the neural network field Y is
set to non zero-values.
To achieve this we define the expectation value for an

arbitrary observable O, estimated during a Markov chain
Monte Carlo simulation, in the modified system that we
aim to sample:

hOi =
PN

i=1 O�i p̃
�1
�i

exp[��E�i + �V f�iY ]
PN

i=1 p̃
�1
�i exp[��E�i + �V f�iY ]

, (6)

where p̃ are the sampling probabilities of the equilibrium
distribution. The probabilities p of the original system,
defined in Eq. (1), can be substituted for p̃�i to obtain:

hOi =
PN

i=1 O�i exp[�V f�iY ]
PN

i=1 exp[�V f�iY ]
, (7)

Define an observable variable Y conjugated to f and write an extended Hamiltonian 

Now f can be computed using path integral methods
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FIG. 1. The architecture of the fully-connected neural network. A renormalization group mapping is established between an
original and a rescaled system based on the predictive function of the neural network.
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model (see Appendix A), which is described by a Hamil-
tonian E. The equilibrium occupation probabilities of
the system are of Boltzmann form and are given by:

p� =
exp[��E�]P
� exp[��E�]

, (1)

where � is the inverse temperature, � a state of the
system and Z =

P
� exp[��E�] the partition function.

When the system is in equilibrium the expectation value
of an arbitrary observable O is:

hOi =
P

� O� exp[��E�]P
� exp[��E�]

. (2)

After a neural network is trained on a system for phase
classification (see Appendix B and Fig. 1), the learned
neural network function f(·) can be applied to a con-
figuration �, converting f� into a statistical mechanical
observable with an associated Boltzmann weight [33]. In
addition, we consider f� as equivalent to the conditional
probability f� ⌘ P
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� that a configuration belongs in the
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quantity bound between [0, 1] and since it has no depen-
dence on the size of the system we can multiply it with
the volume V and recast V f� as an extensive property.

We are now able to investigate the extensive neural
network function V f by introducing it in the Hamilto-
nian of the system. Fields that interact with a system
have conjugate variables which represent the response
of the system to the perturbation of the corresponding
field. We therefore consider V f as a conjugate variable
that couples to an external field Y and define a modified
Hamiltonian:

EY = E � V fY. (3)

The expectation value of the neural network function
can then be expressed as a derivative of the modified
partition function ZY in terms of the field:
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standard definition of Eq. (2). Nevertheless, a derivation
of Eq. (4) in terms of the field gives:

�f =
@hfi
@Y

= �V (hf2i � hfi2). (5)

The quantity �f is recognized as a susceptibility. It is
a measure of the response of the predictive function f to
changes in the neural network field Y . Consequently, the
opportunity to study the e↵ect of a non-zero field Y 6= 0
in the statistical system is now available. One way to
achieve this is to conduct Monte Carlo sampling using
the modified Hamiltonian of Eq. (3) to obtain configu-
rations of this modified system. However, an alternative
option that overcomes the need for sampling is the use of
histogram reweighting [34, 35], where machine learning
derived observables can also be reweighted in parameter
space [33].

III. SYMMETRY BREAKING AND
RESTORATION

Consider a set of N obtained configurations �i from a
system whose explicit form of the Hamiltonian E is not
known. These configurations have been drawn from an
equilibrium distribution, described by Eq. (1), and can
be utilized with reweighting to predict the behaviour of
the modified system, when the neural network field Y is
set to non zero-values.
To achieve this we define the expectation value for an

arbitrary observable O, estimated during a Markov chain
Monte Carlo simulation, in the modified system that we
aim to sample:

hOi =
PN

i=1 O�i p̃
�1
�i

exp[��E�i + �V f�iY ]
PN

i=1 p̃
�1
�i exp[��E�i + �V f�iY ]

, (6)

where p̃ are the sampling probabilities of the equilibrium
distribution. The probabilities p of the original system,
defined in Eq. (1), can be substituted for p̃�i to obtain:

hOi =
PN

i=1 O�i exp[�V f�iY ]
PN

i=1 exp[�V f�iY ]
, (7)

Note that Y define a new direction for reweighting and that reweighting in this 
direction does not require the knowledge of EY



Induced phase transition
62

Figure 5.1: Expectation value of the neural network function f versus the neural
network field Y for values of inverse temperature � = 0.43, 0.440687, 0.45 below,
exactly at, and above the critical inverse temperature �c, respectively. The statistical
errors are comparable with the width of each line.

and the broken-symmetry phases by varying Y . As a result one is able to both break
and restore the symmetry of the system with a neural network field Y .

In fact, the observed behaviour is easy to explain. The neural network function f

is the probability that a configuration belongs in the broken-symmetry phase, and it
is therefore a quantity that satisfies positivity. This is in contrast with the conven-
tional order parameter, namely the magnetization, which can be both positive and
negative. The sign of the introduced neural network term within the Hamiltonian
then depends entirely on the sign of the neural network field Y . We recall that the
original Hamiltonian of the Ising model includes a term �

P
hiji �i�j. As a result, and

based on the fact that system favors states with smaller energy, when a positive or
negative neural network term is introduced in the system the spins will compensate
by aligning towards a ferromagnetic or a disordered state. Consequently, a phase
transition between a symmetric and a broken-symmetry phase can be induced by the
neural network field Y .

By observing that the neural network field Y is able to induce a phase transition in
the two-dimensional Ising model we can then investigate how the susceptibility �f of
the neural network function is a↵ected. The results are shown in Fig. 5.2 for nonzero
values of the neural network field Y . We observe that, irrespective of the initial
phase of the system, there exist maxima for the susceptibility, therefore indicating
the crossing of a phase transition. We recall that we used similar arguments to study
the phase transition of the two-dimensional Ising model and the �4 scalar field theory
in the preceding chapters. These arguments could be extended to the case discussed
here, and one could therefore proceed in studying the induced phase transition using
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Figure 5.2: Expectation value of the susceptibility �f of the neural network function
f versus the neural network field Y . The statistical errors are comparable with the
width of each line.

a finite size scaling analysis. However, in the subsequent chapters we will focus on a
di↵erent method to study phase transitions: the real-space renormalization group.

5.5 The renormalization group

5.5.1 Fundamentals and the transformation

In this section we will discuss the real-space renormalization group in the context
of phase transitions. The method relies on the application of a transformation that
iteratively eliminates degrees of freedom within a system. When applying a renormal-
ization group transformation we must devise a set of rules to produce each rescaled
degree of freedom for a system. These rules must respect certain properties.

In the Ising model the devised rule should produce degrees of freedom which
remain binary, and thus construct a rescaled system which resembles an Ising model.
Our aim is to devise a set of rules that will best preserve the large-scale information
of the system. To choose the rescaled degrees of freedom we use the majority rule, see
Fig. 5.3. Specifically, we split the system into blocks of size b⇥ b, and we then choose
the rescaled degree of freedom based on the majority of the spins within each block.
When the degrees of freedom are equal, we choose the rescaled degree of freedom
randomly as +1 or �1. The majority rule is well-established in studies of the phase
transition of the Ising model.

We begin by observing that the application of a renormalization group transfor-
mation on a system of lattice size L in each dimension will produce a rescaled system

Critical exponents calculated with Renormalisation Group methods

5

Fig. 6 shows the results for the case of the neural
network field, where we obtain the value of the criti-
cal exponent ✓Y = 0.534(3), using Hamiltonian-agnostic
reweighting based on Eq. (7).

The phase transition of the Ising model is described in
completeness based on two relevant operators ⌫ and ✓.
The exponent ✓ governs the divergence of the correlation
length in terms of the external field h that is coupled
to the conventional order parameter. We note that the
predictive function f is reminiscent of an e↵ective order
parameter (see Fig. 2). We find that the numerical value
of the exponent ✓Y agrees within statistical errors with
✓ = 8/15. We hence conclude that Y couples to the same
relevant operator as the external magnetic field. The re-
sults are summarized in Table I and the remaining criti-
cal exponents can be calculated through scaling relations
(see Appendix A).

We emphasize that the operators and the critical
fixed point have been calculated using observables de-
rived from the neural network implementation and their
reweighted extrapolations where no explicit information
about the symmetries of the Hamiltonian was introduced.

VI. CONCLUSIONS

The inclusion of the predictive function in the Hamil-
tonian enables the calculation of a relevant operator,
namely the magnetic field exponent ✓, that was previ-
ously inaccessible through supervised machine learning
methods which are agnostic to the symmetries of the sys-
tem. The application of a renormalization group trans-
formation diminishes finite size e↵ects [36], and a highly
accurate calculation of the critical fixed point and the
relevant operators of the two-dimensional Ising model is
conducted on minimally-sized lattices. The results, ob-
tained by one iteration of a spin blocking transformation,
are comparable with traditional renormalization group
techniques [7], with the added benefit that the method
is agnostic to the Hamiltonian of the system and can
therefore be implemented in cases where an order pa-
rameter is absent or unknown [19]. When knowledge of
the Hamiltonian is included in the calculations, the pos-
sibility to investigate the contribution of the introduced
machine learning term in the calculation of critical ex-
ponents within the framework of the Monte Carlo renor-
malization group [7] additionally exists.

Furthermore, the method extends reweighting, a tech-
nique that is applicable to a wide range of ensembles [34],
by introducing a novel Hamiltonian-agnostic approach

TABLE I. Estimates for the critical exponents ⌫, ✓Y and the
critical fixed point �c of the two-dimensional Ising model.

�c ⌫ ✓Y , ✓
RG+NN 0.44063(21) 1.01(2) ✓Y = 0.534(3)
Exact ln(1 +

p
2)/2 1 ✓ = 8/15

to extrapolate machine learning quantities in parameter
space without requiring any knowledge about the energy
of the system. Predictive functions have been success-
fully constructed in cases of first and second-order phase
transitions for spin models and quantum field theories
[38]. As the proposed method only requires a predic-
tive function, and no knowledge about the Hamiltonian
(see Eq. 7), there exists no a priori argument that for-
bids the method in being applied to a wide range of sys-
tems, across di↵erent ensembles. It is therefore antic-
ipated to be applicable in phase transitions of systems
simulated in ensembles such as the canonical, grand-
canonical, isothermal-isobaric and quantum Monte Carlo
simulations across systems in statistical mechanics, con-
densed matter physics and lattice field theories.

Machine learning can become physically interpretable
by being introduced as a term in the Hamiltonian and
numerous research directions can be anticipated. Any
machine learning function can, in principle, be instilled
within Hamiltonians to control properties of a system,
such as to induce symmetry breaking or symmetry
restoration. The possibility to include a function learned
from a simple model to study a complicated one exists
[38]. Most importantly, by using Monte Carlo simula-
tions to sample configurations of modified systems that
include neural network functions, an in-depth under-
standing of the underlying mechanics of machine learning
can be obtained.

In conclusion, by including machine learning as a term
in the Hamiltonian an essential step towards bridging ma-
chine learning and physics is established, one that could
potentially alter our understanding of machine learning
algorithms and their e↵ects on systems.
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The Inverse Renormalisation Group

Purpose: generating configurations on larger lattices starting from smaller 
ones near criticality with negligible computational cost
Not a new idea, e.g.
• R.H. Swendsen, Phys. Rev. Lett., 42:859–861 (1979)
• D. Ron, R.H. Swendsen, and A. Brandt, Phys. Rev. Lett., 89:275701 (2002) 
• S. Efthymiou, M.J.S. Beach, and R.G. Melko, Phys. Rev. B, 99:075113, (2019)
• S.-H. Li and L. Wang, Phys. Rev. Lett., 121:260601 (2018) 
• K. Shiina, H. Mori, Y. Tomita, H.K. Lee, and Y. Okabe, Scientific Reports, 

11(1):9617 (2021)
Our work presents the first IRG calculation for a Quantum Field Theory 

[D. Bachtis, G. Aarts, F. Di Renzo, and B. Lucini, Phys. Rev. Lett., 128:081603 (2022)]



How the Renormalisation Group works
[Adapted from https://blog.dougashton.net/2012/04/the-renormalisation-group/ , video released under CC BY-SA 4.0]

https://blog.dougashton.net/2012/04/the-renormalisation-group/
http://creativecommons.org/licenses/by-sa/4.0/


How we expect the IRG to work
[Adapted from https://blog.dougashton.net/2012/04/the-renormalisation-group/ , video released under CC BY-SA 4.0]

https://blog.dougashton.net/2012/04/the-renormalisation-group/
http://creativecommons.org/licenses/by-sa/4.0/


Benefits of the IRG

• Overcome critical slowing down
• More precise calculations of observables at criticality
• Better insights on the infrared dynamics of the model
• Can grow the lattice size indefinitely

τ ∝ ξz



Known problem: the RG is not invertible

To invert the RG, we would need to grow the number of degrees of freedom, 
but the process is not unique
E.g., for a blocked spin equal to +1 possibilities (majority rules) include

Even worse for the scalar field, e.g.

compatible with a blocked spin value 0.4 
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What we mean by inverting the RG then?

• We start from a set of configuration generated via a Monte Carlo on a 
lattice of size L
• Using a Machine Learning algorithm, from those we derive a set of 

configurations on a lattice L’ = b L (typically, b=2)
• We assume that the ensemble at L’ as distributed according to the 

Boltzmann measure at L
• This enables us to compute (and to reweight!) observables at L’
• Using crossing of curves, we compute critical quantities
Advantage: numerical effort done on small lattices, hence relatively cheap
Critical to the process: blocking method, ML algorithm and assumption of 
Boltzmann distribution



The blocking method

• Given a block B with generic point i, consider

and

• Now, set 

• This is equivalent to the majority rule in the Ising model 

φ+

B
=

∑
i∈B

φ(i)θ(φ(i))
∑

i∈B
θ(φ(i)))

φ−

B
=

∑
i∈B

φ(i)θ(−φ(i))
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i∈B
θ(−φ(i)))

φB = φ+

B
θ(φ+

B
+ φ−

B
) + φ−

B
θ(−φ+

B
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Lattice augmentation with Machine Learning

Central concept: transposed convolution



Determining the direction of the RG flow
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• Comparison with directly 
simulated lattices show that 
in the augmented system the 
coupling flows towards the 
critical point

• Plotting two different lattice 
sizes (no need for direct 
simulation!) the crossing 
identifies an estimate for the 
critical coupling



Determining critical quantities
We can rewrite the scaling relationships for the magnetisation

in terms of the correlation length

to obtain the operational definition of the critical exponent ratio 

Similarly, from      we get 
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Critical exponents

1.72

1.73

1.74

1.75

1.76

γ/
ν

32/64 32/128 32/256 32/512 64/128 64/256 64/512 128/256 128/512 256/512

Li/Lj

0.12

0.125

0.13

0.135

β/
ν

L0 = 32

Method: configurations obtained with 
a simulation for L=32 and IRG 
augmentation up to L=512

Ratios of critical exponents extracted 
for pairs of lattices

Expected asymptotic approach to 
Ising values clearly observed

All with no critical slowing down!



Conclusions and Outlook

• Machine Learning offers a novel angle to look at phase transitions
• It enables precise calculations of critical properties with no assumed 

knowledge on the underlying symmetry
• Machine Learning exposes novel observables, whose behaviour can 

offer insights on the dynamics of the phase transition
• A powerful demonstrator of the potential of Machine Learning is the 

Inverse Renormalisation Group
• Future work focusing on interpretability
• Related work ongoing to derive more efficient and interpretable 

Machine Learning methods from Quantum Field Theories
[e.g., D. Bachtis, G. Aarts and B. Lucini, Phys.Rev.D 103 (2021) 7, 074510, arXiv:2107.00466] 



License notice

The video on the RG in slide 17 is adapted from 
https://blog.dougashton.net/2012/04/the-renormalisation-group/
removing the explanatory first part. 
The video on the IRG in slide 18 is obtained playing backward the video 
in slide 17.
Both videos are released under the CC BY-SA 4.0.

https://blog.dougashton.net/2012/04/the-renormalisation-group/
http://creativecommons.org/licenses/by-sa/4.0/

