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Einstein theory of gravity is the main paradigm for understanding
the structure and dynamic of our observable Universe

Black holes, compact stars and gravitational waves are amongst the most
spectacular predictions of general relativity and natural probes of the
fundamental principles of Einstein’s theory and its extension
“Gravitational waves enable tests of general relativity in the highly dynamical
and strong-field regime. Using events detected by LIGO-Virgo up to 1
October 2019, we evaluate the consistency of the data with predictions from
the theory. [...] We find no evidence for new physics beyond general relativity,
for black hole mimickers, or for any unaccounted systematics.”1

1
[LIGO and Virgo collaboration 2010.14529]
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Gravity effective field theories

Still it is important to have an better understanding of how Einstein gravity fits
within our current EFT approach of particle physics

By embedding the classical Einstein gravity effects in a quantum EFT
framework we will shed a new light on subtle gravitational effects

We will be working in the context of an effective field theory assuming :

▶ Standard QFT (local, unitary, lorentz invariant, . . . )
▶ The low-energy DOF: graviton, usual matter fields
▶ Standard symmetries: General relativity as we know it

Seff = S
gravity
eff + Smatter

eff
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Classical gravity from quantum amplitudes

p1, m1, S1

p2, m2, S2

p′
1, m1, S1

p′
2, m2, S2

We will then present a scheme using the modern quantum scattering
amplitudes to provide an optimal framework for gravitational observable
that will be the starting point of the wave-form analysis
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Precison graviton from amplitudes

Nature isn’t classical,
dammit, and if you want
to make a simulation of
nature, you’d better make
it quantum mechanical,
and by golly it’s a
wonderful problem,
because it doesn’t look so
easy. (Richard Feynman,
1981)
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EFT are designed for high precision (analytic!) computations applied to
the inspiral phase, which is the largest part of the detected signal!
We look to understand the inspiraling regime in almost all relevant theories of
gravity (Einstein gravity, Supergravity, higher dimensions, higher derivative
operators, . . . )
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Classical gravitational observables

There are various approaches for computing the classical gravitational
observables developped at IPhT in particular

in-in formalism – [arXiv:1811.10950]
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Scattering
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Abstract: We present a formalism for computing classically measurable quantities di-

rectly from on-shell quantum scattering amplitudes. We discuss the ingredients needed

for obtaining the classical result, and show how to set up the calculation to derive the

result efficiently. We do this without specializing to a specific theory. We study in

detail two examples in electrodynamics: the momentum transfer in spinless scattering

to next-to-leading order, and the momentum radiated to leading order.

Effective field theory worldline – [arXiv:2204.06556] & [arXiv:2205.15295]
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Gravitational Bremsstrahlung with tidal effects
in the post-Minkowskian expansion

Stavros Mougiakakos,1, 2 Massimiliano Maria Riva,1 and Filippo Vernizzi1
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(Dated: April 14, 2022)

We compute the mass and current quadrupole tidal corrections to the four-momentum radiated
during the scattering of two spinless bodies, at leading order in G and at all orders in the velocities,
using the effective field theory worldline approach. Extending our previous work, we compute the
conserved stress-energy tensor linearly coupled to gravity generated by the two bodies, including
tidal fields. The total emitted momentum is obtained by phase-space integration of the graviton
momentum weighted by the modulo squared of the radiation amplitude, obtained from the stress-
energy tensor. The integral is solved using scattering amplitude techniques. We show that our
expressions are consistent with existing results up to the next-to-next-to-leading order in the post-
Newtonian expansion. Finally, we derive the asymptotic gravitational wave waveform in direct
space.

Introduction – The direct detection of gravitational
waves from binary black holes [1] and neutron stars [2]
has opened an new way to test gravity in the strong-
field regime [3] and explore fundamental physics [4]. An
important target of current and future observations is
the measurement of tidal deformations during the coa-
lescence of compact objects [5–13], which may shed light
on the internal structure of neutron stars [14], the na-
ture of black holes [15] or the existence of more exotic
astrophysical objects [16–18].

Tidal deformations affect the conservative two-body
dynamics as well as the emitted energy in gravitational
waves. They have been studied utilising different analyt-
ical techniques, most notably the post-Newtonian (PN)
expansion [19–24], the effective-one-body approach [25–
27], Non-Relativistic-General-Relativity (NRGR) [28–33]
and the self-force formalism [34–37] (see [38] for a re-
view).

Another technique that has been employed to
study the gravitational two-body problem is the post-
Minkowskian (PM) method [39–47], consisting in ex-
panding the gravitational dynamics for small interac-
tions, while keeping the velocities fully relativistic. It
has been recently subject of great interest and activ-
ity, in particular in association with the effective-one-
body approach [46, 48–53], scattering amplitude tech-
niques [54–71], and worldline approaches [72–86]. Tidal
effects have been studied with the PM expansion in [87–
95]. These developments concern the scattering of two
bodies moving on unbounded orbits but computed ob-
servables can be extended to the case of bound orbits by
applying the so-called “boundary-to-bound” (B2B) dic-
tionary, consisting in an analytic continuation between
hyperbolic and elliptic motion [96–99].

A long-standing and, until recently, unsolved prob-
lem was the calculation of the four-momentum radi-
ated in gravitational waves—the so-called gravitational
Bremsstrahlung—during the scattering of two spinless
bodies, at leading PM order, i.e. at O(G3). This

was finally obtained very recently in [100, 101] via the
amplitude-based method of [58], in [68] using the eikonal
approach and in [102] by a classical effective field the-
ory (EFT) worldline approach. (See also [95, 103–112]
for previous work on radiation effects. Earlier pioneering
studies include [45, 113–118]. Moreover, see [119, 120]
for conservative and radiative effects in QED.) Cru-
cially, these calculations strongly benefited from several
computational tools developed in the high-energy com-
munity [121], such as reduction to master integrals by
Integration-by-Parts (IBP) identities [122–124] and dif-
ferential equations [125–128] to solve the latter using the
near-static regime as initial conditions.

In particular, in [102] two of us showed that it is pos-
sible to use these tools to directly compute radiated ob-
servables in the PM expansion without going through
the classical limit of scattering amplitudes. Indeed,
the emitted four-momentum was obtained by phase-
space integration of the graviton momentum weighted by
the modulo squared of the classical radiation amplitude
[111, 112], the latter being derived by matching to the
conserved stress-energy tensor linearly coupled to grav-
ity, generated by localized sources. The phase-space inte-
gral was then recasted as a 2-loop integral that we solved
with the aforementioned techniques.

In this letter we use the same approach but we go be-
yond the minimally coupled case, and we compute for
the first time the effect of tidal deformations on the four-
momentum radiated into gravitational waves during the
scattering of the two bodies. We focus on the lead-
ing tidal contributions to the orbital dynamics, i.e. to
quadrupolar deformations, but the extension to higher
multipoles can be straightforwardly obtained using the
same approach.

The article is organized as follows. We first define the
Feynman rules in the case of tidal couplings, which will
allow us to derive the stress-energy tensor linearly cou-
pled to gravity at leading PM order. From the stress-
energy tensor, we compute, using reverse unitarity, the

Gravitational Bremsstrahlung from Spinning Binaries
in the Post-Minkowskian Expansion

Massimiliano Maria Riva, Filippo Vernizzi, and Leong Khim Wong
Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette, France

We present a novel calculation of the four-momentum that is radiated into gravitational waves during the
scattering of two arbitrarily spinning bodies. Our result, which is accurate to leading order in ⌧, to quadratic
order in the spins, and to all orders in the velocity, is derived by using a Routhian-based worldline e�ective field
theory formalism in concert with a battery of analytic techniques for evaluating loop integrals. While nonspinning
binaries radiate momentum only along the direction of their relative velocity, we show that the inclusion of spins
generically allows for momentum loss in all three spatial directions. We also verify that our expression for the
radiated energy agrees with the overlapping terms from state-of-the-art calculations in post-Newtonian theory.

Introduction.— The burgeoning field of gravitational-wave
astronomy [1,2] will o�er new opportunities to explore ques-
tions in fundamental physics, test the nature of strong-field
gravity, and constrain various binary formation and evolution
channels [3–9]. As binary systems with spinning black holes
constitute one of the primary sources of gravitational waves,
modeling precisely how spin influences a binary’s inspiral is
essential for making robust detections and performing accurate
parameter estimation studies [10–12].

In the traditional approach to the two-body problem, one
makes the so-called post-Newtonian (PN) expansion [13]: the
equations of motion for the binary and the gravitational field
are solved order by order simultaneously in powers of ⌧
and {2; respectively, the gravitational constant and the square
of the relative velocity between the two bodies. Since the two
parameters are related by the virial theorem, this perturbative
scheme is ideally suited to the study of bound orbits.

An alternative approach, which lends itself more naturally
to the study of unbounded orbits (i.e., scattering encounters),
is the post-Minkowskian (PM) approximation [14]. Here, one
also expands in powers of ⌧, but keeps { fully relativistic.
While the study of unbounded orbits may, at face value, seem far
removed from the coalescing binaries that gravitational-wave
detectors observe, quantities computed in one scenario can
be linked to the other via, e.g., analytic continuation [15–18].
Alternatively, PM calculations could also be used as inputs
to improve the accuracy of the e�ective-one-body approach
[14,19–24] — a popular semi-analytic method for constructing
waveform templates.

In recent years, rapid advancements in the PM program
have been driven by the scattering amplitudes community
[25–39], who (at present) have pushed out calculations in
the conservative sector up to 4PM; i.e., up to $(⌧4) [40,41].
Analogous results, obtained independently through various
worldline e�ective field theory (EFT) approaches, followed
shortly thereafter [42–47]. These results were later extended
to include tidal deformation [48–55] and spin e�ects [56–67].

Developments in the radiative sector are more recent. The
four-momentum emitted into gravitational waves by a non-
spinning binary was first computed at leading (3PM) order in
Refs. [68,69] via the “KMOC” approach [29], independently
in Ref. [70] via the eikonal approach, and then in Ref. [71]

via the worldline EFT approach. Tidal contributions were
later included in Ref. [72]. (See also Refs. [66,67,73–87] for
related works on radiative e�ects.) Notably absent from the
literature, however, is the inclusion of spins in the radiated
observables at 3PM.

To be precise, the outgoing waveform from a spinning binary
has been computed up to 2PM in Ref. [83]. Using this to
compute the radiated four-momentum at 3PM is challenging,
however, because of the multiscale nature of the resulting
integrals, which have so far proven to be intractable unless one
also performs a low-velocity expansion [81–83]. Fortunately,
this is not the only option, and indeed our goal in this Letter is to
compute the four-momentum radiated at 3PM up to quadratic
order in the spins and to all orders in the velocity.

We bypass the aforementioned complications with the wave-
form by formulating the problem as an integral of the outgoing
graviton momentum over phase space, weighted by (what is
essentially) the square of the binary’s (pseudo) stress-energy
tensor. The latter we construct by using the worldline EFT
formalism, while the loop integrals that arise are computed by
appropriating powerful techniques from high-energy physics
[88]; namely, reverse unitarity [89–92], a reduction to master
integrals via integration by parts [93–95], and di�erential equa-
tion methods [96–101], as previously used in Refs. [68–72] for
the nonspinning case. Due to their length, explicit expressions
for some of our results are omitted from the main text and are
instead presented in the Supplemental Material (SM) [102]. A
computer-readable version is also available in several ancillary
files attached to the arXiv submission of this Letter.

Worldline EFT.— Consider the case of two spinning bodies
approaching one another from infinity, and suppose that their
distance of closest approach remains much larger than their
individual radii. In this scenario, the details of their scattering
encounter are well described by an EFT in which the two bodies
are treated as point particles traveling along the worldlines
of their respective centers of energy. Their dynamics are
conveniently described by a Routhian [64,103–105], which for
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Classical Gravity from Quantum Scattering

One important new insight is that the classical gravitational two-body
interactions (conservative and radiation) can be extracted from quantum
scattering amplitudes

M(p1 · p2, q2) =
p1 p2

p02p01

<latexit sha1_base64="wamjZnkmvP6bFRDiGgtS4qRVkug="></latexit>

=

+∞∑
L=0

GL+1
N ML−loop
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Classical physics from quantum loops
p1, m1, S1

p2, m2, S2

p′
1, m1, S1

p′
2, m2, S2

In the limit  h, q2 → 0 with q = q
 h fixed at each loop order of the quantum

amplitude has the Laurent expansion2 γ = p1·p2
m1m2

and q2 = (p1 − p ′
1)

2

ML(γ, q2,  h) =
M

(−L−1)
L (γ, q2)

 hL+1|q|
L(4−D)

2 +2
+ · · ·+

M
(−1)
L (γ, q2)

 h|q|
L(4−D)

2 +2−L
+ O( h0)

▶ At all loop orders there is a classical contribution of order 1/ h
▶ classical gravity contributions are determined by the unitarity
▶ The quantum amplitude has IR and UV divergences. But the classical

amplitude is finite
2

[Iwasaki; Holstein, Donoghue; Bjerrum-Bohr, Damgaard, Planté, Vanhove; Kosower, Maybee, O’Connell]
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Exponentiation of the S-matrix

Using an exponential representation of the Ŝ matrix3

Ŝ = I+
i
 h

T̂ = exp

(
iN̂
 h

)

doing the Dyson expansion with the conservative and radiation part

T̂ = GN

∑
L⩾0

GL
N T̂L+G

1
2
N

∑
l⩾0

GL
N T̂ rad

L , N̂ = GN

∑
L⩾0

GL
NN̂L+G

1
2
N

∑
l⩾0

GL
NN̂rad

L

The classical radial action N̂classical does not have any  h. The higher power of
1/ h more singular than the classical are needed for the consistency of the
full quantum amplitude and the correct exponentiation of the amplitude

ML(γ, q2,  h) =
M

(−L−1)
L (γ, q2)

 hL+1|q|
L(4−D)

2 +2
+ · · ·+

M
(−1)
L (γ, q2)

 h|q|
L(4−D)

2 +2−L
+ O( h0)

3
[Damgaard, Planté, Vanhove]
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Classical physics from loops :  h counting

In QFT the propagator has inverse  h that the traditional counting disregards
(cf . [Quantum Field Theory, Itzykson Zuber, §6-2-1 page 288])4

At the L + 1PM order, the two-body scattering amplitude scales with the
masses as

ML(γ, q2) =
GL+1

N m2
1m2

2

q2+ (2−D)L
2

L∑
i=0

cL−i+2,i+2(γ)mL−i
1 mi

2

This piece will emerge from a L quantum amplitude as follows

ML
∣∣∣
classical

∝ m2
1m2

2

q2+ (2−D)L
2

 hL−1 GL+1
N

∑
i

(m1c
 h

)L−i (m2c
 h

)i
∝

ML(γ, q2)

 h

4
[B. R. Holstein and J. F. Donoghue, [arXiv:hep-th/0405239 [hep-th]].]
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One graviton exchange : tree-level amplitude

M1 = −16πGN  h
2(p1 · p2)

2 − m2
1m2

2 − | hq⃗ |2(p1 · p2)

| hq⃗ |2

The  h expansion of the tree-level amplitude

M1 =
M

(−1)
1 (p1 · p2)

 h|q|2
+  h4πGNp1 · p2

The higher order in q2 are quantum with powers of  h
The classical potential is obtained by taking the 3d Fourier transform

Ei =
√

p2
i + m2

i

V1(p1 · p2, r) =
∫ d3q⃗
(2π)3

M
(−1)
1 (⃗q) ei⃗q·⃗r

4E1E2
=

GN

E1E2

m2
1m2

2 − 2(p1 · p2)
2

r
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Velocity cuts

We need to expand the amplitude to get a prescribed polynomial mass
dependence. When expanding the amplitude we get combination of linear
propagators5

(
1

(pA · ℓA+iε)(pA · ℓB−iε)
−

1
(pA · ℓB+iε)(pA · ℓA−iε)

)
×

(
1

(pB · ℓA−iε)(pB · ℓC+iε)
−

1
(pB · ℓC−iε)(pB · ℓA+iε)

)

can be expressed in terms of delta functions
(

δ(pA · ℓA)

pA · ℓB + iε
−

δ(pA · ℓB)

pB · ℓA + iε

)
×
(

δ(pB · ℓC)

pB · ℓA + iε
−

δ(pB · ℓA)

pB · ℓC + iε

)

thanks to the identity

1
x + iε

−
1

x − iε
= −2iπδ(x)

5
[Bjerrum-Bohr, Damgaard, Planté, Vanhove]
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Velocity cuts and Classical amplitude

The classical amplitude arises from the contribution with L-delta functions on
the massive propagators projecting the integral on world-line like graph6

−→ −→

−→

6
[Bjerrum-Bohr, Damgaard, Planté, Vanhove]
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Classical black hole metric from quantum amplitudes
PHYSICAL RE VIEW D VOLUME 7, NUMBER 8 15 APRIL 1973

Quantum Tree Graphs and the Schwarzschild Solution
M. Z. Duff*

Physics Department, Imperial College, London SR'7, England
(Received 7 July 1972)

It is verified explicitly to second order in Newton's constant, G, that the quantum-tree-graph
contribution to the vacuum expectation value of the gravitational field produced by a spherical-
ly symmetric c-number source correctly reproduces the classical Schwarzschild solution. If
the source is taken to be that of a point mass, then even the tree diagrams are divergent, and
it is necessary to use a source of finite extension which, for convenience, is taken to be a per-
fect fluid sphere with uniform density. In this way both the interior and exterior solutions may
be generated. A mass renormalization takes place; the total mass of the source, m, being
related to its bare mass, mo, and invariant radius, e„, by the Newtonian-like formula, m
=ma-3Gmz /5e„+O(G ), and the infinities in the quantum theory are seen to be a manifesta-
tion of the divergent self-energy problem encountered in classical mechanics.

I. INTRODUCTION

In an attempt to find quantum corrections to
solutions of Einstein's equations, the question
naturally arises as to whether the @-0 limit of
the quantum theory correctly reproduces the class-
ical results. Formally, at least, the correspon-
dence between the tree-graph approximation to
quantum field theory and the classical solution of
the field equations is well known, ' i.e., the
classical field produced by an external source
serves as the generating functional for the con-
nected Green's functions in the tree approxima-
tion, the closed-loop contributions vanishing in
the limit I-0. The purpose of this paper is to
present an explicit calculation of the vacuum ex-
pectation value (VEV) of the gravitational field in
the presence of a spherically symmetric source
and verify, to second order in perturbation theory,
that the result is in agreement with the classical
Schmarzschild solution of the Einstein equations.
This would appear to be the first step towards
tackling the much more ambitious program of in-
cluding the radiative quantum corrections.
Whereas in quantum electrodynamics it is a

comparatively simple matter to obtain the Coulomb
potential by means of the single-photon exchange
from a stationary point charge, the analogous
situation in gravidynamics, where the gauge group
is non-Abelian, proves much more difficult. First-
ly, as has been shown by Arnomitt, Deser, and
Misner (henceforth referred to as ADM) the
concept of a strictly pointlike source in generaL
relativity is untenable. There is a minimum in-
variant extension for a particle below which no
solutions of the field equations exist, the space-
time developing an intrinsic singularity at a fi-
nite point in the exterior domain of the particle for

radii less than this minimum. Moreover, the to-
tal mass of the source mould then become negative
and eventually negatively infinite as the point-
mass limit is taken. As we shall see, these dif-
ficulties manifest themselves in the quantum theory
in the guise of divergent tree diagrams when a
point source is used. As a model for the source,
therefore, it is essential to choose a particle of
finite extension.
In their work, ADM pick the simplest model for

such an extended particle, a spherical "shell dis-
tribution" of pressure-free dust for which the
mass density is merely proportional to 5(r —e),
where r denotes the radial coordinate and & the
radius of the shell. From the quantum point of
view, however, another dilemma arises. The
quantum-field-theory calculations are most con-
veniently performed in a manifestly Lorentz-co-
variant gauge by employing, for example, the
harmonic coordinate condition of de Donder, '
[(-g)'~'g""] „=0. Whereas in the canonical
approach ADM are able to carry out their anal-
ysis in a frame for which the metric is continuous
across the shell, in harmonic coordinates the
usual regularity conditions are violated and the
metric is itself discontinuous. This problem has
been discussed in a previous paper. ' One is then
faced with a choice, whether to use the attractive-
ly simple 5-function source and put up with the
attendant problems of discontinuity, or to abandon
the shell in favor of a uniform sphere thus gaining
continuity at the expense of simplicity. In this
paper we shall use the latter.
Finally, there is the question of stability. A

cloud of pressure-free dust for which the inter-
actions are purely gravitational is not a static
configuration. This is clear on physical grounds.
In the absence of phenomenological nongravitational

2317

I. INTRODUCTION

In an attempt to find quantum corrections to
solutions of Einstein's equations, the question
naturally arises as to whether the @-0 limit of
the quantum theory correctly reproduces the class-
ical results. Formally, at least, the correspon-
dence between the tree-graph approximation to
quantum field theory and the classical solution of
the field equations is well known, ' i.e., the
classical field produced by an external source
serves as the generating functional for the con-
nected Green's functions in the tree approxima-
tion, the closed-loop contributions vanishing in
the limit I-0. The purpose of this paper is to
present an explicit calculation of the vacuum ex-
pectation value (VEV) of the gravitational field in
the presence of a spherically symmetric source
and verify, to second order in perturbation theory,
that the result is in agreement with the classical
Schmarzschild solution of the Einstein equations.
This would appear to be the first step towards
tackling the much more ambitious program of in-
cluding the radiative quantum corrections.
Whereas in quantum electrodynamics it is a

In 1973 Duff asked the question about the
classical limit of quantum gravity.a He
showed how to reproduce the Schwarzschild
back hole metric from quantum tree graphs
to G3

N order

The double expansion in GN and  h give a
new perspective on the classical limit of
gravitational scattering amplitudes

aM. J. Duff, “Quantum Tree Graphs and the
Schwarzschild Solution,” Phys. Rev. D 7 (1973),
2317-2326

Pierre Vanhove (IPhT) Two-body gravitational scattering in EFT 20/06/2022 14 / 21



Black hole metric from amplitudes h
(3)
1(r,d)=

8(7d4�63d3+214d2�334d+212)

3(d�3)(d�4)(d�1)3
⇢(r,d)3,

h
(3)
2(r,d)=�8(d�2)2(2d3�13d2+25d�10)

(d�3)(d�4)(d�1)3
⇢(r,d)3.(3.44)

3.4Three-loopamplitude

Thediagramscontributingtotheclassicalcorrectionsatthirdpost-Minkowskianorderof

themetricatthetwo-loopgraphs

M(3)
3(p1,q)=�

p
32⇡GNT(3)µ⌫✏µ⌫,(3.45)

wherethethree-loopstress-tensorisgivenbyfivedistinctdiagrams

T
(3)µ⌫
(a)=,T

(3)µ⌫
(b)=,

T
(3)µ⌫
(c)=,T

(3)µ⌫
(d)=,

T
(3)µ⌫
(e)=.

Asbefore,wepermutetheinternalmomentasuchthatbytakingtheresidueat2ml0i=

i✏fromthemassivepropagators,weextractthenon-analytictermswhichcontributetothe

classicalmetricinthestaticlimit.Aftertakingtheresiduesandincludingthesymmetry

factors

T
(3)µ⌫
(a)=64⇡3G3

Nm4

Z3Y

n=1

dd~ln
(2⇡)d

⌧µ⌫
(3)⇡⇢,�⌧(l1+l2,q)⌧

⇡⇢
(3)(�l1,l1+l2)⌧

�⌧
(3)(�l3,l3+l4)

(~l1)
2(~l2)

2(~l3)
2(~l4)

2(~l1+~l2)
2(~l3+~l4)

2

�����
l01=l02=l03=0

,

T
(3)µ⌫
(b)=256⇡3G3

Nm4

Z3Y

n=1

dd~ln
(2⇡)d

⌧µ⌫
(3)�⌧,00(l1+q,q)⌧⇡⇢ (3)(�l3,l3+l4)⌧

�⌧
(3)00,⇡⇢(�l2,l1+q)

(~l1)
2(~l2)

2(~l3)
2(~l4)

2(~l1+~q)2(~l3+~l4)
2

�����
l01=l02=l03=0

,

T
(3)µ⌫
(c)=�512⇡3G3

Nm4

3

Z3Y

n=1

dd~ln
(2⇡)d

⌧µ⌫
(3)↵�,00(l1+q,q)⌧↵� (4)00,00,00(l1+q,l2,l3,l4)

(~l1)
2(~l2)

2(~l3)
2(~l4)

2(~l1+~q)2

�����
l01=l02=l03=0

,

T
(3)µ⌫
(d)=�256⇡3G3

Nm4

Z3Y

n=1

dd~ln
(2⇡)d

⌧�� (3)(�l3,l3+l4)⌧
µ⌫
(4)��,00,00(q,l1,l2,l3+l4)

(~l1)
2(~l2)

2(~l3)
2(~l4)

2(~l3+~l4)
2

�����
l01=l02=l03=0

,

T
(3)µ⌫
(e)=

256⇡3G3
Nm4

3

Z3Y

n=1

dd~ln
(2⇡)d

⌧µ⌫
(5)00,00,00,00(q,l1,l2,l3,l4)

(~l1)
2(~l2)

2(~l3)
2(~l4)

2

�����
l01=l02=l03=0

,
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h
(2)
2(r,d)=

4(d�2)2(3d�2)

(d�4)(d�1)2
⇢(r,d)2,(3.26)

where⇢(r,d)isdefinedin(3.8).

Thisreproducestheexpressiongivenin[21]andtheexpressionin[24,eq.(22)]for

↵=0.

3.3Two-loopamplitude

Thediagramscontributingtotheclassicalcorrectionsatthirdpost-Minkowskianorderof

themetricatthetwo-loopgraphs

M(2)
3(p1,q)=�

p
32⇡GNT(2)µ⌫✏µ⌫,(3.27)

therearefourcontributions

T
(2)µ⌫
(a)=,T

(2)µ⌫
(b)=,

T
(2)µ⌫
(c)=,T

(2)µ⌫
(d)=.

3.3.1Thediagrams(a),(b),(c)

Thesumofthecontributionsfromthediagrams(a),(b),(c)afterappropriatelabellingof

themomenta,canbeexpressedas

cX

i=a

T
(2)µ⌫
(i)=�16G2

N⇡2

m

Z3Y

n=1

dd+1ln
(2⇡)2d

�(l1+l2+l3+q)

⇥
⌧��(p1,l1+p1)⌧

�⌧(l1+p1,�l2+p1)⌧
◆✓(l2�p2,�p2)⌧

��
(3)◆✓,�⌧(�l2,l1+q)·P↵�

��·⌧µ⌫
(3)↵�,��(l1+q,q)

l21l
2
2l

2
3(l1+q)2

⇥
 

1

(l1+p1)2�m2

1

(l2�p2)2�m2
+

1

(l3+p1)2�m2

1

(l1�p2)2�m2

+
1

(l3+p1)2�m2

1

(l2�p2)2�m2

!
.(3.28)

Usingtheapproximateformofthetwoscalarsonegravitonvertexin(3.17)and(l1+p1)
2�

m2⇡2ml01andtakingtheresidue2ml0i=i✏,sincefortherestoftheresidueswegeta

zerocontributionatorderO(✏0),weget

cX

i=a

T
(2)µ⌫
(i)=32⇡2G2

Nm3

Z2Y

n=1

dd+1ln
(2⇡)2d

⌧µ⌫
(3)↵�,00(l1+q,q)·P↵�

��·⌧�� (3)00,00(�l2,l1+q)

(~l1)
2(~l2)

2(~l3)
2(~l1+~q)2

�����
l01=l02=0

,

(3.29)
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Using Eq. (4.8) a straightforward calculation gives, in momentum space,
1

F(y~g~(g2 $2~3/3(~gy ~gt ~3) sym g 8 ( 4'qa3a3 i82a&&e38pm ' ~a+ 26~B2qa~ap838pm ~s &~Bpo|38$2Ãg 38g

(4.17)

+@V qPV + +yjLV (4.18}
the Einstein Lagrangian may again be expanded in
a fashion similar to Eq. (4.6),
8 (@}=2"'+MS"'+KZ'g'+ . .

However, the explicit forms for Z~ and 2'~" are
rather complicated and we shall not write them
down. In the de Donder gauge (though not in gen-
eral), the free propagator for Q"" field is the
same as that for Q"". The higher-order vertex
functions, however, are different.
We now turn to the rather delicate problem of

choosing the source term 2~. First of all we de-
fine

(4.19)

J„,=-(-z)'"&„., (4.20)
where T„„is the energy-momentum tensor given
in Eq. (2.27). If we now insert the interior form
of g"" known from the classical theory [Eq.
(3.11)], into the above equation, then to order x',
J„„is simply
J =u(r), Z„=P(v)n„,

where g and P are given by Eqs. (2.10) and (3.9).
Next, we note that if the Einstein equations

(4.21)

The "sym" standing in front of this expression in-
dicates that a symmetrization is to be carried out
on each index pair &,P„o',P» and n,P, . The sym-
bol I', means that a summation is to be performed
over all six permutations of the momentum index
triplets ~i~ikx~ nsPsk» a,P,k, . In the above equa-
tion we have omitted an over-all 5 function ex-
pressing conservation of momentum.
So far, the density 0"' has been chosen as the

interpolating field rather than g"" because 2 ~ and
Zo and hence the 3-point function of (4.17) are
much simpler in this form. " In computing the
VEV of the gravitational field, however, we pre-
fer to use the more familiar g"" for reasons which
will become clear later. Setting

since

5Ac 1
6 „.=p(-g) (4.23b)

yPV pV (4.24)
However, by adding the noncovariant piece S~ to
the Lagrangian the gauge symmetry (general co-
variance) is broken and the above constraint no
longer holds. If we now choose A~ to be

Ai=— d xgu (x)I gx)1
2 (4.25)

and regard J„„asbeing a known classical func-
tion of x [Eq. (4.21)], and no longer a functional
of the metric, then functional differentiation with
respect to g"" yields the correct term in the Ein-
stein equation (4.23a). We may now proceed to
calculate the VEV of the gravitational field in the
presence of the external classical source J„„in
the usual way.
The S matrix is given by the Feynman-Dyson

expression

S =Texp i d xg. , x+g x (4.26)

where 2, describes the self-interaction of the
gravitational field and subscript J reminds us of
the presence of the external source. The VEV of

Unfortunately, in gravity theory (as in all non-
Abelian gauge theories), the introduction of a
purely inert external source is complicated by
the fact that the source itself depends on the field.
The components of the matter tensor T"" are not
all independent but satisfy the divergence condi-
tion

—*(-g)"G„.+-.~„,=o
K

(4.22)
(a) (o) (c)

5A~
PV 2 PV (4.23a}

are to be obtained by functional differentiation of
the action (A~+A~), then we must have FIG. 1. Feynman diagrams for the VEV of the gravi-

tational field in the presence of a c-number source (de-
noted by the circles). The closed loops have been
ignored.

▶ The tree skeleton graphs are the one computed by Duff
▶ Reproduces the Schwarzschild-Tangherlini metric in d ⩾ 4 dimensions7

7
[Mougiakakos, Vanhove]
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The scattering angle

One important observable that allows to analytically continue from the
scattering regime to the bound state regime is the scattering angle

Scattering angle from the (classical) radial action

N4PM(γ, |b|) =
∫
R2

eiq·b N4PM(γ, q2)

4m1m2
√
γ2 − 1

d2q
(2π)2

as χ4PM(γ) = −∂N4PM(γ, J)/∂J with the angular
momentum J = m1m2

√
γ2 − 1b/EC.M.

χ

2

∣∣∣
1PM+2PM

=
(2γ2 − 1)
γ2 − 1

(
GNm1m2

J

)

+
3π(m1 + m2)(5γ2 − 1)
8(m2

1 + m2
2 + 2m1m2γ)

(
GNm1m2

J

)2

Angle for a test mass in the Schwarzschild black hole of mass M = m1 + m2.
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The 3PM scattering angle

χ

2

∣∣∣
3PM

=

(
GNm1m2

J

)3 √
γ2 − 1

((
64γ6 − 120γ4 + 60γ2 − 5

)

3 (γ2 − 1)2

−
4m1m2

3E2
C.M.

γ
(
14γ2 + 25

)
+

m1m2

E2
C.M.

4(3 + 12γ2 − 4γ4) arccosh(γ)√
γ2 − 1

+
2m1m2(2γ2 − 1)2

E2
C.M.

√
γ2 − 1

(
−

11
3

+
d

dγ

((2γ2 − 1) arccosh(γ)√
γ2 − 1

))

At 3PM (two-loop) new phenomena arise
▶ The conservative part deviates from Schwarzschild as we have

contributions which depends (linearly) on the relative mass8

ν = m1m2
(m1+m2)2

▶ And the important Radiation-reaction terms9

8
[Damour; Bern et al.; di Vecchia et al.;Bjerrum-Bohr et al.]

9
[Damour; di Vecchia et al.;Bjerrum-Bohr et al.]
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Radiation reaction

The problem of radiation reaction has been
one of the fundamental theoretical issues in
general relativity. This is a needed
contribution to match the binary-pulsar
observations.

At 3PM a consistent derivation of radiation-reaction was missing. The
amplitude approach clarified that
▶ The radiation-reaction from the soft region of the amplitude (not in the

potential region of10)
▶ The radiation-reaction is needed for restoring a smooth continuity

between the non-relativitic, relativistic and ultra-relativistic regimes11

The complete classical scattering amplitude gives a clear-cut unified and
unambiguous resolution of these issues at 3PM12

10
[Bern et al.]

11
[Damour, Veneziano et al.]

12
[Bjerrum-Bohr, Damgaard, Planté, Vanhove]
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Post-Minkowskian expansion

The advantages of the scattering amplitude approach is that
▶ No resummation in velocity is needed as this is automatically given by

the relativistic expression in the relative velocity u

MGR(p1 · p2, q) =
∑
m,n

Gn
Numc(n,m)(q) u2 ∼

GN(m1 + m2)

r
≪ 1

Compare to post-Newtonian expansion known up to 4PN
▶ One only gets velocities no higher derivative : acceleration terms &c in

the Lagrangian are removed by appropriate coordinate transformation.
No need to use equation of motions

▶ The amplitude gives a way to analyse the transition between the small
velocity regime and the ultra-relativistic regime and the effect of
gravitational radiation13

13
[Damour; di Vecchia, Heisenber, Russo, Veneziano]
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Beyond Eintein gravity

The same formalism can be used to include effects beyond Einstein gravity
From the exponentiation of the S-matrix S ≃ exp(N(J, E)) one can include
corrections beyond the classical Einstein gravity and study bulk causality and
how classical observables are modified
▶ Star light bending angle14

θS ≃ ∂N(J, E)
∂J

≃ 4GM
b

+
15π

4

(
GM

b

)2

+
8buS − 48 log(b/b0)

π

G hM
b3

▶ Bulk causality and UV completion can be studied using the Shapiro time
delay/advance15

δT = 2
∂N(J, E)

∂E
⩾ 0

Causality is preserved thanks to various positivity constraints on Wilson
coefficients

14
[Bjerrum-Bohr, Donoghue, Holstein, Planté, Vanhove]

15
[Donoghue et al.; Camanho et al. ; Arkani-Hamed et al.; Bellazini et al.; Huber et al.]
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Outlook

This approach gives a new understanding on the relation between classical
(Einstein) general relativity and the quantum theory of gravity

1 The 2-body gravitational scattering amplitude leads to the classical
observables : potential, scattering angle, and radiation

2 The amplitude approach is much simpler that the traditional approach
from solving Einstein’s equation, and analytic relativistic expressions.
The velocity cut method is very efficient method for extracting the
classical part

3 This is a very useful framework for studying subtle effects like
radiation-reactions and memory effects where subtle non-linear effects
arise from 5PN order [Blanchet; Damour; ...]

4 The approach applies to any EFT of gravity where one can compute
amplitudes. Therefore this is a power approach to derive new constraints
for modified gravity scenarios.
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