RECENT PROGRESS IN HYDRODYNAMICS FOR HEAVY-ION COLLISIONS

BAYESIAN INFERENCE AND RECENT PHENOMENOLOGICAL CONSTRAINTS ON QGP PROPERTIES

Matthew Luzum

Based on: JETSCAPE, Phys.Rev.C 103 (2021) 5, 054904; Phys.Rev.Lett. 126 (2021) 24, 242301 Nijs, et. al, Phys.Rev.Lett. 126 (2021) 20, 202301; Phys.Rev.C 103 (2021) 5, 054909 (Trajectum 1) Nijs, et. al, arXiv:2110.13153 (Trajectum 2)

University of São Paulo

Strong and Electro-Weak Matter 2022 June 20

SEWM 2022-06-20 1/19

<ロト < 同ト < ヨト < ヨ)

- **1** BAYESIAN INFERENCE PRIMER
- **2** Hydrodynamic model and parameterization
- **3** RESULTS AND DISCUSSION
- **4** SUMMARY / CONCLUSIONS

• • • • • • • • • • • •

1 BAYESIAN INFERENCE PRIMER

2 HYDRODYNAMIC MODEL AND PARAMETERIZATION

3 RESULTS AND DISCUSSION

4 SUMMARY / CONCLUSIONS

э.

• □ > • □ > • □ > •

SAC

BAYESIAN BASICS:

- Parameter estimation: Given a model, what parameter values are compatible with experimental data, and with what precision can we determine them?
- Can answer with Bayesian inference ideal for detailed and systematic treatment of uncertainty
- Experimental data (D) and parameters (p) are each associated with probability distributions
- Bayes' theorem relates conditional probabilities. E.g., Pr(D|p) is the probability of D, given p.

The probability that both D and p are true is

 $\Pr(p\&D) = \Pr(p) \times \Pr(D|p) = \Pr(D) \times \Pr(p|D)$

prior imes likelihood = evidence imes posterior

- We typically want to know $\Pr(p|D) \propto \Pr(p) \Pr(D|p)$
- \implies need to choose a prior Pr(p) and compute the likelihood Pr(D|p) from comparison with data

Pr(
$$D|p$$
) $\propto e^{-\chi^2/2}$
with $\chi^2 = (D - \text{Model}(p))^T \Sigma^{-1} (D - \text{Model}(p))$
and $\Sigma =$ uncertainty covariance (exp. and theor.

na (r

・ロト ・同ト ・ヨト ・ヨト

BAYESIAN BASICS:

- Parameter estimation: Given a model, what parameter values are compatible with experimental data, and with what precision can we determine them?
- Can answer with Bayesian inference ideal for detailed and systematic treatment of uncertainty
- Experimental data (D) and parameters (p) are each associated with probability distributions
- Bayes' theorem relates conditional probabilities. E.g., Pr(D|p) is the probability of D, given p.
- The probability that both D and p are true is

 $\Pr(p \& D) = \Pr(p) \times \Pr(D|p) = \Pr(D) \times \Pr(p|D)$

 $prior \times likelihood = evidence \times posterior$

- We typically want to know $\Pr(p|D) \propto \Pr(p) \Pr(D|p)$
- \implies need to choose a prior Pr(p) and compute the likelihood Pr(D|p) from comparison with data

Pr(
$$D|p$$
) $\propto e^{-\chi^2/2}$
with $\chi^2 = (D - \text{Model}(p))^T \Sigma^{-1} (D - \text{Model}(p))$
and $\Sigma =$ uncertainty covariance (exp. and theor.

Ma C

・ロト ・同ト ・ヨト ・ヨト

BAYESIAN BASICS:

- Parameter estimation: Given a model, what parameter values are compatible with experimental data, and with what precision can we determine them?
- Can answer with Bayesian inference ideal for detailed and systematic treatment of uncertainty
- Experimental data (D) and parameters (p) are each associated with probability distributions
- Bayes' theorem relates conditional probabilities. E.g., Pr(D|p) is the probability of D, given p.
- The probability that both D and p are true is

 $\Pr(p \& D) = \Pr(p) \times \Pr(D|p) = \Pr(D) \times \Pr(p|D)$

prior \times likelihood = evidence \times posterior

- We typically want to know $\Pr(p|D) \propto \Pr(p)\Pr(D|p)$
- \implies need to choose a prior Pr(p) and compute the likelihood Pr(D|p) from comparison with data

Pr(
$$D|p$$
) $\propto e^{-\chi^2/2}$
with $\chi^2 = (D - \text{Model}(p))^T \Sigma^{-1} (D - \text{Model}(p))$
and $\Sigma =$ uncertainty covariance (exp. and theor.

Ma C

1 BAYESIAN INFERENCE PRIMER

2 Hydrodynamic model and parameterization

BRESULTS AND DISCUSSION

4 SUMMARY / CONCLUSIONS

TIME LINE OF HEAVY-ION COLLISION

Collision model

- Incoming nuclei
- Initial scattering
- Hydrodynamization
- Relativistic Fluid
 - Quark-Gluon Plasma
 - Hadrons
- Hadronic scattering

TIME LINE OF HEAVY-ION COLLISION

Collision model

- Incoming nuclei
- Initial scattering
- Hydrodynamization
- Relativistic Fluid
 - Quark-Gluon Plasma
 - Hadrons
- Hadronic scattering

HYDRODYNAMICS

- Main workhorse: 2nd order relativistic viscous hydrodynamics
- Equation of state from Lattice $\epsilon(p)$
- Unknown quantities: transport coefficients
- Shear $\frac{\eta}{s}(T)$ and bulk viscosity $\frac{\zeta}{s}(T)$; second order transport coefficients τ_{π} , τ_{Π} , $\tau_{\pi\pi}$ (Trajectum)

HYDRODYNAMICS

- Main workhorse: 2nd order relativistic viscous hydrodynamics
- Equation of state from Lattice $\epsilon(p)$
- Unknown quantities: transport coefficients
- Shear $\frac{\eta}{s}(T)$ and bulk viscosity $\frac{\zeta}{s}(T)$; second order transport coefficients τ_{π} , τ_{Π} , $\tau_{\pi\pi}$ (Trajectum)

TIME LINE OF HEAVY-ION COLLISION

Collision model

- Incoming nuclei
- Initial scattering
- Hydrodynamization
- Relativistic Fluid
 - Quark-Gluon Plasma
 - Hadrons
- Hadronic scattering

MODEL

INITIAL CONDITIONS FOR HYDRODYNAMICS

- Nucleus
 - Nucleon positions sampled from Woods-Saxon distribution
 - Reject nuclei with pairs fo nucleons closer than d_{min}
- Trento
 - Boost invariant
 - Participants determined by impact-parameter dependent cross section with nucleon width parameter w
 - Energy density at time $\tau = 0^+$ proportional to generalized mean of nuclear thickness functions multiplied by a random fluctuation γ of variance σ_k^2 .

$$\tau \epsilon(\mathbf{x}) = NT_R(\mathbf{x}_{\perp}; p) = N\left(\frac{T_A^p(\mathbf{x}_{\perp}) + T_B^p(\mathbf{x}_{\perp})}{2}\right)^{1/p}$$
$$T_A(\mathbf{x}_{\perp}) = \sum_{i \in A} \gamma_i \rho(\mathbf{x}_{\perp} - \mathbf{x}_{i,\perp})$$

- Free steaming
 - Energy spreads out isotropically with transverse velocity v = 1 (JETSCAPE) or v < 1 (Trajectum) for time τ_{fs} , which can depend on energy via exponent α (JETSCAPE)
 - Full energy-momentum tensor at τ_{fs} used as initial condition for hydro

• • • • • • • • • • • •

SAC

TIME LINE OF HEAVY-ION COLLISION

Collision model

final detected **Relativistic Heavy-Ion Collisions** particles_distributions Kinetic freeze-out Hadronization Initial energy density Hadron gas phase QGP phase collision overlap zone pre-equilibrium viscous hydrodynamics dynamics free streaming collision evolution <u>τ~10¹⁵ fm/c</u> $\tau \sim 0 \, \text{fm/c}$ $\tau \sim 1 \, \text{fm/c}$ $\tau \sim 10 \text{ fm/c}$

- Incoming nuclei
- Initial scattering
- Hydrodynamization
- Relativistic Fluid
 - Quark-Gluon Plasma
 - Hadrons
- Hadronic scattering

MATTHEW LUZUM (USP)

HADRONIC AFTERBURNER

- Switch from fluid description to particles (hadrons) at temperature T_{sw}
- Equilibrium distribution function given by kinetic theory, but viscous corrections non-universal
- Estimate uncertainty via 3 models
 - Grad (JETSCAPE)
 - Chapman-Enskog (JETSCAPE)
 - Pratt-Torrieri-Bernhard (Trajectum & JETSCAPE)
- Collisions and decays via SMASH (JETSCAPE & Trajectum 1) or UrQMD (Trajectum 2)

• □ > • □ > • □ > •

Systems and observables

Systems

- Trajectum 1 (pPb & PbPb)
- Trajectum 2 (PbPb)
- JETSCAPE (PbPb & AuAu)
- Observables
 - Charged hadrons
 - Multiplicity $dN_{ch}/d\eta$
 - Transverse energy $dE_T/d\eta$
 - p_T fluctuations $\delta p_T / \langle p_T \rangle$
 - Integrated anisotropic flow (JETSCAPE) v₂{2}, v₃{2}, v₄{2}
 - Identified hadrons (pion, kaon , proton)
 - Yield *dN/dy*
 - ⟨*p*_T⟩
 - Differential anisotropic flow (Trajectum) v₂{2}(p_T), v₃{2}(p_T)
 - p_T spectra (Trajectum)

(日) (同) (日) (日)

SAC

OUTLINE

- **BAYESIAN INFERENCE PRIMER**
- 2 HYDRODYNAMIC MODEL AND PARAMETERIZATION
- **3** RESULTS AND DISCUSSION
- **4** SUMMARY / CONCLUSIONS

< D > < B > < E > < E</p>

POSTERIOR

- After a lot of work (emulator validation, closure tests, etc.) one of the main results is the multi-dimensional posterior Pr(p|D)
- Visualize by marginalizing posterior over various parameters
- Point of maximum probability is the Maximum a Posteriori (MAP)

RESULTS AND DISCUSSION

MARGINALIZED POSTERIOR: SHEAR AND BULK VISCOSITY

MATTHEW LUZUM (USP)

SEWM 2022-06-20 15/19

DAG

Prior $Pr(\rho)$ and information gain D_{KL}

- $\Pr(p|D) \propto \Pr(p) \Pr(D|p)$
- The prior Pr(p) represents knowledge or belief about parameters before measurement
- There doesn't exist a neutral or uninformed choice
- The choice of prior can significantly affect the posterior
- Should compare prior and posterior. Can quantify the information gain

$$D_{KL} \equiv \sum_{p} \Pr(p) \log \left[\frac{\Pr(p)}{\Pr(p|D)} \right]$$

BAYESIAN MODEL AVERAGING

- Results are always interpreted in the context of a particular model — if something is missing from a model, this error does not appear in the results
- Can compare multiple models with Bayesian evidence $Pr^{(i)}(D) = \int dp Pr^{(i)}(D|p) Pr(p)$

- E.g., models for the hadron distribution at hydro→kinetic theory transition
- Grad:PTB:CE \simeq 5000:2000:1 \implies CE disfavored by data
- Probability-weighted Bayesian model average: Pr_{BMA}(p, D) ∝ ∑_i Pr⁽ⁱ⁾(D) Pr⁽ⁱ⁾(p|D)

- **1** BAYESIAN INFERENCE PRIMER
- 2 HYDRODYNAMIC MODEL AND PARAMETERIZATION
- **3** RESULTS AND DISCUSSION
- **4** SUMMARY / CONCLUSIONS

CONCLUSIONS

- A lot of tools and techniques have been developed for sophisticated and detailed extraction of information from data-to-model comparisons
- We now have better knowledge of QGP properties than at any time in the past, but improvements to the simulation models will make them more robust and accurate. For example:
 - Systematic exploration of viscous corrections to the freeze-out distribution function and other aspects of final hadronic evolution
 - Improvement of initial state / hydrodynamization model is the Trento + free streaming model sufficiently flexible?
 - Inclusion of other data (more observables, more collision systems, rapidity-dependent dynamics)

nac

EXTRA SLIDES

3 SEWM 2022-06-20

< ロ > < 団 > < 豆 > < 豆 >

5990

- A state-of-the-art simulation model was used with 18 parameters, including a parameterized initial condition, viscous hydrodynamic evolution (including temperature dependent shear visocity and bulk viscosity), and hadron cascade afterburner
- Separate simulations were done with different models for particlization at the end of hydro ("Grad", "PTB", "CE")

Parameter	Symbol	Prior	Parameter	Symbol	Prior
Norm. Pb-Pb 2.76 TeV	/v[2./6 lev]	[10, 20]	temperature of (η / s) kink	$^{\prime}\eta$	[0.13, 0.3] GeV
Norm. Au-Au 200 GeV	N[0.2 TeV]	[3, 10]	(η/s) at kink	$(\eta/s)_{kink}$	[0.01, 0.2]
generalized mean	p	[-0.7, 0.7]	low temp, slope of (n/s)	a _{low}	[–2, 1] GeV ^{— 1}
nucleon width	w	[0.5, 1.5] fm	high temp. slope of (n/s)	^a high	[–1, 2] GeV ^{— 1}
min. dist. btw. nucleons	a ³ min	[0, 1.7 ³] fm ³	shear relaxation time factor	b_{π}	[2, 8]
multiplicity fluctuation	σ_k	[0.3, 2.0]	maximum of (ζ / s)	$(\zeta / s)_{max}$	[0.01, 0.25]
free-streaming time scale	τ_R	[0.3, 2.0] fm/c	temperature of (ζ / s) peak	T_{ζ}	[0.12, 0.3] GeV
free-streaming energy dep.	α	[-0.3, 0.3]	width of (ζ / s) peak	w _ζ	[0.025, 0.15] GeV
particlization temperature	T _{sw}	[0.135, 0.165] GeV	asymmetry of (ζ / s) peak	λ_{ζ}	[-0.8, 0.8]

Ma C

- A state-of-the-art simulation model was used with 18 parameters, including a parameterized initial condition, viscous hydrodynamic evolution (including temperature dependent shear visocity and bulk viscosity), and hadron cascade afterburner
- Separate simulations were done with different models for particlization at the end of hydro ("Grad", "PTB", "CE")

Parameter	Symbol	Prior	Parameter	Symbol	Prior
Norm. Pb-Pb 2.76 TeV	/v[2.76 lev]	[10, 20]	temperature of (η / s) kink	$^{\prime}\eta$	[0.13, 0.3] Gev
Norm. Au-Au 200 GeV	N[0.2 TeV]	[3, 10]	(η/s) at kink	$(\eta/s)_{kink}$	[0.01, 0.2]
generalized mean	p	[-0.7, 0.7]	low temp, slope of (n/s)	a _{low}	[–2, 1] GeV ^{— 1}
nucleon width	w	[0.5, 1.5] fm	high temp, slope of (n/s)	^a high	[–1, 2] GeV ^{— 1}
min. dist. btw. nucleons	a ³ min	[0, 1.7 ³] fm ³	shear relaxation time factor	b_{π}	[2, 8]
multiplicity fluctuation	σ_k	[0.3, 2.0]	maximum of (ζ / s)	$(\zeta / s)_{max}$	[0.01, 0.25]
free-streaming time scale	τ_R	[0.3, 2.0] fm/c	temperature of (ζ / s) peak	T_{ζ}	[0.12, 0.3] GeV
free-streaming energy dep.	α	[-0.3, 0.3]	width of (ζ / s) peak	w _ζ	[0.025, 0.15] GeV
particlization temperature	$T_{\rm sw}$	[0.135, 0.165] GeV	asymmetry of (ζ / s) peak	λ_{ζ}	[-0.8, 0.8]

Ma C

- A state-of-the-art simulation model was used with 18 parameters, including a parameterized initial condition, viscous hydrodynamic evolution (including temperature dependent shear visocity and bulk viscosity), and hadron cascade afterburner
- Separate simulations were done with different models for particlization at the end of hydro ("Grad", "PTB", "CE")

Parameter	Symbol	Prior	Parameter	Symbol	Prior
Norm. Pb-Pb 2.76 TeV	N[2.76 IEV]	[10, 20]	temperature of (η / s) kink	I_{η}	[0.13, 0.3] Gev
Norm. Au-Au 200 GeV	N[0.2 TeV]	[3, 10]	(η/s) at kink	$(\eta/s)_{kink}$	[0.01, 0.2]
generalized mean	p	[-0.7, 0.7]	low temp. slope of (n/s)	a _{low}	[–2, 1] GeV ⁻¹
pucloon width	w	[0.5, 1.5] fm	high temp. slope of (n/s)	a _{high}	[-1, 2] GeV ⁻¹
	d ³ min	[0, 1.7 ³] fm ³		b _π	[2, 8]
min. dist. btw. nucleons		[0 3 2 0]	shear relaxation time factor	(C / S)	[0.01.0.25]
multiplicity fluctuation	^o k	[0.0, 2.0]	maximum of (ζ / s)	(\$75)max	[0.01, 0.20]
free-streaming time scale	^τ R	[0.3, 2.0] fm/ <i>c</i>	temperature of (ζ / s) peak	T_{ζ}	[0.12, 0.3] GeV
free streeming onergy dep	α	[-0.3, 0.3]	width of $(f_{1}(a))$ pook	w _ζ	[0.025, 0.15] GeV
iree-streaming energy dep.	Τ	[0 135 0 165] GeV	width of (ζ / S) peak	,).	[_0.8.0.8]
particlization temperature	'SW	[0.100, 0.100] CCV	asymmetry of (ζ / s) peak	γ_{ζ}	[0.0, 0.0]

Ma C

- A state-of-the-art simulation model was used with 18 parameters, including a parameterized initial condition, viscous hydrodynamic evolution (including temperature dependent shear visocity and bulk viscosity), and hadron cascade afterburner
- Separate simulations were done with different models for particlization at the end of hydro ("Grad", "PTB", "CE")

Parameter	Symbol	Prior	Parameter	Symbol	Prior
Norm. Pb-Pb 2.76 TeV	N[2.76 IeV]	[10, 20]	temperature of (η/s) kink	I_{η}	[0.13, 0.3] GeV
Norm. Au-Au 200 GeV	N[0.2 TeV]	[3, 10]	(η/s) at kink	$(\eta/s)_{kink}$	[0.01, 0.2]
generalized mean	p	[-0.7, 0.7]	low temp. slope of (n/s)	a _{low}	[–2, 1] GeV ^{– 1}
pueleen width	w	[0.5, 1.5] fm	high temp, along of $(-, (z))$	a _{high}	[-1, 2] GeV ⁻¹
nucleon width	d ³	[0, 1.7 ³] fm ³	high temp. sope of (η/s)	b _π	[2, 8]
min. dist. btw. nucleons	min	[0.0.00]	shear relaxation time factor	(((-)	
multiplicity fluctuation	σk	[0.3, 2.0]	maximum of (ζ / s)	(c/s)max	[0.01, 0.25]
free-streaming time scale	^τ R	[0.3, 2.0] fm/c	temperature of (ζ / s) peak	T_{ζ}	[0.12, 0.3] GeV
free-streaming energy dep.	α	[-0.3, 0.3]	width of (ζ / s) peak	w _ζ	[0.025, 0.15] GeV
particlization temperature	T _{sw}	[0.135, 0.165] GeV	asymmetry of (ζ / s) peak	λ_{ζ}	[-0.8, 0.8]

Ma C

- A state-of-the-art simulation model was used with 18 parameters, including a parameterized initial condition, viscous hydrodynamic evolution (including temperature dependent shear visocity and bulk viscosity), and hadron cascade afterburner
- Separate simulations were done with different models for particlization at the end of hydro ("Grad", "PTB", "CE")

Parameter	Symbol	Prior	Parameter	Symbol	Prior
Norm. Pb-Pb 2.76 TeV	N[2.76 IEV]	[10, 20]	temperature of (η / s) kink	I_{η}	[0.13, 0.3] Gev
Norm. Au-Au 200 GeV	N[0.2 TeV]	[3, 10]	(η/s) at kink	$(\eta/s)_{kink}$	[0.01, 0.2]
generalized mean	p	[-0.7, 0.7]	low temp, slope of (n/s)	a _{low}	[–2, 1] GeV ^{—1}
nucleon width	w	[0.5, 1.5] fm	high temp, slope of (n/s)	a _{high}	[-1, 2] GeV ⁻¹
min. dist. btw. nucleons	a ³ min	[0, 1.7 ³] fm ³	shear relaxation time factor	b_{π}	[2, 8]
multiplicity fluctuation	σ_k	[0.3, 2.0]	maximum of (ζ / s)	$(\zeta / s)_{max}$	[0.01, 0.25]
free-streaming time scale	τ_R	[0.3, 2.0] fm/c	temperature of (ζ/s) peak	T_{ζ}	[0.12, 0.3] GeV
free-streaming energy dep.	α	[-0.3, 0.3]	width of (ζ/s) peak	w _ζ	[0.025, 0.15] GeV
particlization temperature	$T_{\rm sw}$	[0.135, 0.165] GeV	asymmetry of (ζ/s) peak	λ_{ζ}	[-0.8, 0.8]

Ma C

- A state-of-the-art simulation model was used with 18 parameters, including a parameterized initial condition, viscous hydrodynamic evolution (including temperature dependent shear visocity and bulk viscosity), and hadron cascade afterburner
- Separate simulations were done with different models for particlization at the end of hydro ("Grad", "PTB", "CE")

Parameter	Symbol	Prior	Parameter	Symbol	Prior
Norm. Pb-Pb 2.76 TeV	N[2./6 IeV]	[10, 20]	temperature of (η / s) kink	I_{η}	[0.13, 0.3] GeV
Norm. Au-Au 200 GeV	N[0.2 TeV]	[3, 10]	(η/s) at kink	$(\eta/s)_{kink}$	[0.01, 0.2]
generalized mean	p	[-0.7, 0.7]	low temp. slope of (n/s)	a _{low}	[-2, 1] GeV - 1
nucleon width	w	[0.5, 1.5] fm	high temp. slope of (n/s)	^a high	[-1, 2] GeV ⁻¹
	d ³ min	[0, 1.7 ³] fm ³	abase relevation time faster	b_{π}	[2, 8]
min. dist. btw. nucleons	σ_k	[0.3, 2.0]	shear relaxation time factor	$(\zeta / s)_{max}$	[0.01, 0.25]
	τ_B	[0.3, 2.0] fm/c	maximum of (ζ / s)	T _C	[0.12, 0.3] GeV
free-streaming time scale	α	[-0.3, 0.3]	temperature of (ζ / s) peak	w _c	[0.025, 0.15] GeV
free-streaming energy dep.	Τ	[0 135_0 165] GeV	width of (ζ / s) peak	ر ۸	[-0.8.0.8]
particlization temperature	'SW	[0.100, 0.100] 001	asymmetry of (ζ / s) peak	rς	[0.0, 0.0]

Ma C

Ξ.

5900

EVALUATING MODEL SUCCESS

- Posterior does not tell the overall quality of model/fit (only *relative* quality at different parameter points)
- · Must evaluate success of model separately
- E.g., direct observable comparison of posterior predictive distributions (right), or discrepancy relative to experimental uncertainty (below):

 ζ/s)_{max}

DIRECTED STUDY EXAMPLE: DEUTERONS (ARXIV:2203.08286)

- Bayesian methods can be used for smaller, directed studies
- Heavier particles such as deuterons have a larger sensitivity to bulk viscosity
- \implies Deuteron measurements can be used to better constrain ζ/s

Red: hadrons + deuterons

