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« Faire de l'Enseignement Supérieur, de la Recherche et de l'Innovation (ESRI) le socle de l'économie de la 
connaissance en Pays de la Loire » : cette volonté s'est traduite par l'adoption par le Conseil Régional des 16 
et 17 décembre 2020, de la nouvelle stratégie ESRI 2021/2027. Après une large concertation avec 
l'ensemble des acteurs concernés, la Région a posé des lignes directrices fortes pour accroître l'agilité du 
territoire (individuelle et collective), créer de la valeur économique et réussir les transitions sociétales de 
son territoire. 
La stratégie régionale qui sera déployée sur la période 2021/2027 repose sur trois grandes ambitions qui se 
déclinent ensuite en objectifs et mesures opérationnelles : 



• How do systems described by non-abelian gauge theories approach 
thermal equilibrium?

• Important question in 

• cosmology

• atomic physics

• heavy ion collisions

Understanding thermalisation
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• How can we describe this rapid transition from a the initial nuclear state to a 
near-thermal one?

• Bulk observables are very successfully described by hydrodynamics

• Hydro starts at an initialisation time , τ0 > 0 𝒪(fm/c)

?

Understanding thermalisation in QCD

3



• Weak-coupling picture of hot, non-abelian gauge theories

• The effective kinetic theory

• Bottom-up thermalisation

• NLO corrections to the effective kinetic theory: towards a better 
understanding&control of theory and its uncertainties 
Yu Fu, JG, Shahin Iqbal, Aleksi Kurkela PRD105 (2022)

In this talk
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The weak-coupling picture
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Basic picture of weakly coupled plasma – hard particles and soft fields

Hard particle modes, P ⇠ T

Soft field modes, P ⇠ gT

↵s = g2/4⇡

• The soft fields can be treated classically since their occupation number is large

nB(!) =
1

e!/T � 1
' T

!
⇠ 1

g

Figure by D. Teaney

Hard particles, P~T

Soft field 
modes 
P~gT

↵s =
g2

4⇡

• Hard (quasi)-particles carry most of the stress-energy tensor. (Parametrically) 
largest contribution to thermodynamics

The weak-coupling picture
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Hard particles, P~T

Soft field 
modes 
P~gT

↵s =
g2

4⇡

The weak-coupling picture

• The gluonic soft fields have large occupation numbers ⇒ they can be treated 
classically

nB(!) =
1

e!/T � 1

!⇠gT
' T

!
⇠ 1

g



• Time-independent, equilibrium thermodynamics: high orders reached, many 
resummation schemes

Weak-coupling thermodynamics
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Figure 26: Pressure and trace anomaly at µB = 0. In both panels we compare the perturbative
results with lattice data from the Wuppertal-Budapest (WB) collaboration [138].

even turn out to reside extremely close to the datapoints for a wide temperature
range, but this may well be a fortuitous coincidence.

6.2. Probing nonzero densities

Next, we move on to quantities that probe the finite-density part of the QCD
phase diagram, yet are measurable on the Euclidean lattice without problems,
i.e. various susceptibilities. These quantities are defined as the derivatives of the
pressure with respect to chemical potentials corresponding to di↵erent conserved
quantities. A commonly studied subclass are the diagonal and o↵-diagonal quark
number susceptibilities (QNSs)

�ijk (T ) ⌘ @
i+j+k

p (T, µu, µd, µs)

@µi
u
@µ

j

d
@µk

s

����
µ=0

, (218)

where the indices u, d, s refer to the three lightest quark flavors. In addition,
we shall consider derivatives with respect to the baryon chemical potential µB ,
dubbed baryon number susceptibilities. These are related to the QNSs through
linear relations easily derivable from the identities

µu =
1

3
µB +

2

3
µQ, (219)

µd =
1

3
µB � 1

3
µQ, (220)

µs =
1

3
µB � 1

3
µQ � µS , (221)

where µQ and µS are the chemical potentials related to electric charge and
strangeness.

Susceptibilities have been considered within the HTLpt framework up to the
full two- and three-loop orders in [110, 111], respectively, and up to O(g6 ln g)
using the DR resummation [142, 143] (see also refs. [144, 145] for related work).

64

Review: JG Kurkela Strickland Vuorinen Phys. Rep. 880 (2020)
Lattice: Budapest-Wuppertal, Borsanyi et al JHEP1011 (2010)

HTLpt: Haque Bandyopadhyay Andersen Mustafa 
Strickland Su JHEP05 (2014)

EQCD: Kastening Zhai PRD52 (1995), Blaizot Iancu 
Rebhan PRD68 (2003) Laine Schröder PRD73 (2006)
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• Starting to scratch the surface of beyond leading-order calculations

Weak-coupling dynamics
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• Starting to scratch the surface of beyond leading-order calculations

strict LO resummed LO NLO
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Figure 30: The heavy quark di↵usion coe�cient at NLO, as computed in [166, 167]. The
“strict” and “resummed” LO curves di↵er in that the second resums the Debye mass in the
propagator for all exchanged momenta. It thus resums a subset of higher order corrections.

tion introduced by the sum rule leading to Eq. (88), i.e. the mapping to the 3D
Euclidean theory. The computation of these O(g) corrections, as presented in
[166, 167], is thus a daunting brute-force calculation in the Hard Thermal Loop
theory. It required firstly the development of the e↵ective rules described in
Sec. 4.1.1, secondly their application and the generation of all diagrams, assign-
ments and amplitudes, and finally the numerical evaluation of 4-dimensional
loop integrations over these HTL-resummed amplitudes.

The results of this impressive computational tour de force are shown in
Fig. 30. The two di↵erent LO definitions di↵er in how the matching between
the soft and hard sectors is performed. Irrespective of this aspect, whose details
are to be found in the original works, the figure shows how the NLO corrections
rapidly (g & 0.5) overtake the LO results, thus showing again a pattern of bad
convergence similar to what we discussed before in the cases of q̂ and transport
coe�cients. Understanding precisely the physics responsible for these large
corrections in these observables and finding suitable ways of re-arranging the
perturbative expansion remains an important open issue, to which we will come
back in Sec. 8. Finally, we remark that the Euclidean definition in [165] does
not allow direct lattice determinations; analytical continuations of the Euclidean
results, of the kind discussed in Sec. 5.1, are necessary, albeit possibly easier due
to the lack of a narrow transport peak [165]. Results obtained in [168–171]—see
also [172] for an extraction from reconstructed quarkonium spectral functions—
show a  that is larger than the NLO perturbative results; recent results [173]
point towards a better agreement at very high temperatures.

For what concerns heavy quark bound states, we wish to discuss an issue
where the application of real-time perturbation theory shows its advantages in

61

• Equilibrium heavy-quark 
momentum diffusion   
Caron-Huot Moore PRL100 (2007)

• See also

• M.A. Escobedo’s talk Thursday for 
its effect on heavy quarkonia 

• G. Moore’s talk Friday for lattice 
approaches to transport coefficients

κ ≡ ⟨p2⟩/t

Weak-coupling dynamics
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Thermal photon rate  
JG Hong Lu Kurkela Moore Teaney JHEP1305 (2013)

• Starting to scratch the surface of beyond leading-order calculations

Weak-coupling dynamics
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Figure 28: In both plots, we display the shear viscosity over the (Stephan–Boltzmann) entropy
density at leading- [98] and next-to-leading [145] order. On the left, the horizontal axis is the
temperature and the bands come from di↵erent definitions of the coupling, as explained in the
main text. On the right we plot the result as a function of coupling, mD/T ⇠ g below and
↵s above. The green band corresponds to an estimation of the e↵ect of the terms that were
not computed in [145], while the dashed green line is obtained by adding to the LO collision
operator the contribution from NLO transverse momentum broadening only. Figures taken
from [145].

the di↵erence between LO and NLO. In Fig. 28, we display the results of [98]
and [145] for the shear viscosity. These LO and NLO determinations are still
insensitive to genuine vacuum UV divergences and the associated charge renor-
malization; in other words, these calculations determine ⌘(g). To plot ⌘(T ) one
needs to fix g(T ), with no guidance from the calculation on how to perform
scale setting. The procedure in [145] was to take either a standard MS prescrip-
tion with the renormalization scale set to multiples of the Matsubara frequency,
giving the large bands shown in the figure, or to choose instead the e↵ective
coupling of EQCD, as computed in [146] and discussed in more detail later on
in Sec. 6.3.1. This latter coupling has no leading-logarithmic dependence on the
temperature.

As the plot on the left shows, the ratio between the NLO and LO results
varies from 1/2 at very large temperatures down to 1/5 at the QCD transition,
where the uncertainty from the coupling becomes large. In this region, ⌘/s is of
a size compatible with strong-coupling determinations in holographic theories,
to be discussed later in Sec. 5.4. The plot on the right shows how the LO and
NLO results start to di↵er significantly at mD/T & 0.5. Also shown is the small
uncertainty band from the estimate of the missing terms and a curve obtained
by adding only the contribution from transverse momentum exchange, encoded
in NLO q̂ [65], to the LO collision operator, showing how it is the dominant
NLO contribution. We will return to this later in this subsection. We refer to
[145] for the results on light flavor di↵usion, which show a similar pattern to
those of ⌘.
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Figure 25: The thermal photon production rate at LO [38] and NLO [34], with C(k) ⌘
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1). CLO is the LO rate, �Ccoll is the collinear correction only,

�Csoft+sc is the soft and semi-collinear correction only and CLO+NLO is the full NLO result.
Figure taken from [34].

in principle need to be complemented (and complicated) by the addition of an
extra soft gluon attaching to the soft quark via HTL-resummed vertices. This
apparently nightmarish brute-force HTL computation—see the coming Sec. 5.3
for an example of comparable intricacy—was however avoided through the ex-
tension to NLO of the sum rule discussed in the equations leading to Eq. (101),
yielding a compact, closed-form result for the NLO soft contribution.

In the collinear sector, the NLO corrections only a↵ect the PUI Hamilto-
nian discussed in Eq. (115) in Sec. 4.2, owing to the factorization between soft
medium e↵ects and the hard splittings we described there. What is needed are
thus the NLO corrections to the asymptotic mass and to the soft scattering
kernel d�

d2q?
. Both were computed by Caron-Huot using the mapping to the

three-dimensional Euclidean theory discussed around Eq. (88); the results can
be found in [112] and [65], respectively, and we will return to the case of of d�

d2q?

in Sec. 5.2. The perturbation to Eq. (136) from these corrections was finally de-
termined in [34]. Finally, the semi-collinear region was again proven to factorize
into a DGLAP splitting kernel times a soft operator, which was also determined
using the Euclidean mapping discussed above.

Assembling together the di↵erent contributions, the results of [34] are sum-
marized in Fig. 25, which shows how the contribution from the NLO collinear
modes are large and positive, while those from the soft and semi-collinear modes
are of similar magnitude but opposite sign. They thus largely cancel, leaving
only a 20% to 30% increase in the photon rate at ↵s = 0.3.
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Shear viscosity  
JG Moore Teaney JHEP1803 (2018)
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Baym Braaten Pisarski Arnold Moore Yaffe Baier Dokshitzer Mueller 
Schiff Son Peigné Wiedemann Gyulassy Wang Aurenche Gelis Zaraket 
Blaizot Iancu . . .

The effective kinetic theory

• To study thermalisation at weak coupling, need an effective kinetic theory
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• Goal: describing the dynamics of excitations on scales large compared to 
their typical de Broglie wavelength (1/T in equilibrium).

• The effective theory is obtained by integrating out (off-shell) quantum 
fluctuations (for instance from Kadanoff-Baym equations). 

• Boltzmann equation for the single-particle phase space-distribution: its 
convective derivative equals a collision operator 
 

• Related condition: the underlying QFT has well-defined quasi-particles, with a 
mean free time ( ) large compared to the duration of an each collision ( )

• Kinetic description valid up to a maximum occupancy 

1/C 1/Qexchanged

(@t + vp ·r)f(p,x, t) = C[f ]

The effective kinetic theory
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• LO Effective Kinetic Theory for  quarks and gluons Arnold Moore Yaffe (2003) 
 
s

•  elastic, number-preserving  and collinear, number-changing  
 
 

C2↔2 C1↔2
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p

p0

Q

k0

k

Fig. 1. Hard 2 $ 2 collision contributing the collision rate C2$2[µ]. Only hard lines which
enter or exit the boxed region are included in an e↵ective Boltzmann description.

hard2to2

ways this divergence can be regulated. At leading and next-to-leading we find
it convenient16 to simply cuto↵ the transverse momentum exchange at small q?,
q? > µ. It is not di�cult to extract the logarithmic dependence on µ for µ ⌧

T . Indeed, let us consider for illustration a leading-log approximation to C2$2[µ]:
we expand the distribution function and matrix elements to second order in the
exchange momentum Q and arrive at a Fokker-Planck equation21–23 for fp

C2$2[µ] = êUV (µ) v
i
@fp

@pi
+

1

2
q̂
ij

UV (µ)
@
2
fp

@pi@pj
+O

✓
T

p

◆
+ µ-independent , (12){eq:twotwoexpand}

In writing this equation we have dropped terms suppressed by T/p. Here v̂ is a unit
vector in the direction of p, and the di↵usion tensor qijUV (µ) controls the longitudinal
and transverse momentum di↵usion,

q̂
ij

UV (µ) ⌘ q̂L,UV (µ)v̂
i
v̂
j +

1

2
q̂UV (µ)(�

ij
� v̂

i
v̂
j) . (13)

The values of these coe�cients are found from the expansion of Eq. (10), and for
pure gauge are at leading log

q̂UV (µ) =g
2
CAT

m
2

D

2⇡
log

✓
T

µ

◆
, (14){uvqhat}

q̂L,UV (µ) =g
2
CAT

m
2
1

2⇡
log

✓
T

µ

◆
. (15)

Here the Debye mass is given by the integral over distribution functions

m
2

D
= 2g2CA

Z
d
3
p

(2⇡)3
np(1 + np)

T
=

1

3
g
2
CAT

2
, (16){eq:md}

and the asymptotic mass is given by a similar integral in Eq. (8). At this point
the interpretation of these thermodynamic integrals as the Debye and asymptotic
masses is premature. This interpretation will be clear from Sec. 3, which explains
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(p, 0)

(p� !,�q?)

(!, q?)

Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (pz ,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1

⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads

�E(h, p,!) '
h
2

2p!(p� !)
+

m
2
1!

2!
+

m
2
1 p�!

2(p� !)
�

m
2
1 p

2p
, (33){defdeltaE}

wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is
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ways this divergence can be regulated. At leading and next-to-leading we find
it convenient16 to simply cuto↵ the transverse momentum exchange at small q?,
q? > µ. It is not di�cult to extract the logarithmic dependence on µ for µ ⌧

T . Indeed, let us consider for illustration a leading-log approximation to C2$2[µ]:
we expand the distribution function and matrix elements to second order in the
exchange momentum Q and arrive at a Fokker-Planck equation21–23 for fp

C2$2[µ] = êUV (µ) v
i
@fp

@pi
+

1

2
q̂
ij

UV (µ)
@
2
fp

@pi@pj
+O

✓
T

p

◆
+ µ-independent , (12){eq:twotwoexpand}

In writing this equation we have dropped terms suppressed by T/p. Here v̂ is a unit
vector in the direction of p, and the di↵usion tensor qijUV (µ) controls the longitudinal
and transverse momentum di↵usion,

q̂
ij

UV (µ) ⌘ q̂L,UV (µ)v̂
i
v̂
j +

1

2
q̂UV (µ)(�

ij
� v̂

i
v̂
j) . (13)

The values of these coe�cients are found from the expansion of Eq. (10), and for
pure gauge are at leading log

q̂UV (µ) =g
2
CAT

m
2

D

2⇡
log

✓
T

µ

◆
, (14){uvqhat}

q̂L,UV (µ) =g
2
CAT

m
2
1

2⇡
log

✓
T

µ

◆
. (15)

Here the Debye mass is given by the integral over distribution functions

m
2

D
= 2g2CA

Z
d
3
p

(2⇡)3
np(1 + np)

T
=

1

3
g
2
CAT

2
, (16){eq:md}

and the asymptotic mass is given by a similar integral in Eq. (8). At this point
the interpretation of these thermodynamic integrals as the Debye and asymptotic
masses is premature. This interpretation will be clear from Sec. 3, which explains
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Requires g2 f≪1

4

and that in the � ! 0-limit, the di↵erence between the
two NLO schemes vanishes faster than their di↵erence to
LO. This demonstrates that the correction is a true NLO
correction and is not a↵ected by the scheme di↵erences
that a↵ect the result beyond the NLO accuracy.

Extrapolating to higher values of 3 . � . 10, we see
that the di↵erence between the two NLO schemes be-
comes comparable to the size the of the NLO correc-
tion indicating quantitative sensitivity to corrections be-
yond the NLO. However, taking the di↵erence of the two
schemes as an estimate of the uncertainty, we observe
that, strikingly, the corrections remain below 10%-level
even for these large values.

At leading order, the thermalization time is parametri-
cally (up to logarithms) of order teq ⇠ (�2T )�1(Q/T )1/2

[26], related to the democratic splitting time of the par-
ticles at the scale Q to a thermal bath with tempera-
ture T . At NLO, we corrections are expected to arise at
the relative order �T/m ⇠

p
�. We find that that LO

thermalization time (defined by conditions (4) ) is well
described for � < 5 by a fit2

tLO

eq
⇡ �2

h
(Q/T )1/2(173.+ 9.8 log �)� 277.

i
(5)

For small � < 1 and 20 < Q < 80 the NLO correction in
both schemes is approximately given by

tLO
eq

tNLO
eq

⇡ 1 + �1/2

✓
0.22� 0.05 log

✓
Q

T

◆◆
(6)

IV. CONCLUSIONS:

The poor convergence of the perturbative series for sev-
eral di↵erent quantities has limited their usefulness in
phenomenological applications. In many cases, this poor
convergence arises from the soft corrections studied here.
This is the case for quantities such as transport coe�-
cients [] and thermal production rates. For the equation
of state, the first soft correction arising at �3/2 order nu-
merically overwhelms the leading correction of order �
for even extremely small values of � making the use of
perturbation theory questionable for all but extremely
high temperatures.

Our results for the NLO corrections to the Bottom-Up
thermalization o↵er a striking

• Why are corrections small (no qhat)

• what does this imply to bjoerken expanding case

2
Note that this thermalization time approximately agrees with

that of [1] but di↵ers slightly due to slightly di↵erent initial con-

ditions and the precise definition of thermalization time used.

Q/T � t̂LO

eq t̂NLO1

eq t̂NLO2

eq Q/T � t̂LO

eq t̂NLO1

eq t̂NLO2

eq

20 1 503.4 465.2 473.2 35 0.1 623.4 614.5 615.7

40 1 818.7 784.1 791.8 35 0.5 707.5 683.3 687.6

60 1 1060.0 1039.1 1044.4 35 1 749.3 712.5 720.7

80 1 1263.9 1261.5 1263.2 35 5 859.4 764.5 803.4

100 1 1443.4 1462.2 1459.8 35 10 910.5 774.3 849.5

20 5 588.4 489.5 528.8 50 0.1 798.9 791.7 793.3

40 5 934.6 845.5 882.4 50 0.5 897.3 878.6 882.0

60 5 1193.8 1142.4 1163.5 50 1 945.5 916.9 923.6

80 5 1409.5 1410.4 1408.9 50 5 1070.9 998.6 1028.7

100 5 1599.2 1661.6 1630.4 50 10 1129.1 1027.6 1086.4

TABLE I. Table of thermalization time t̂eq ⌘ teq/(�
2
T) for

di↵erent initial conditions Q/T and values of the coupling
constant �.

Appendix A: Definitions and implementations of the

kinetic theory

1. Leading order kinetic theory

The precise form of the LO collision operator reads 3

C2$2[f ](p) =

Z

k,p0,k0

|M(m)|2(2⇡)4�(4)(p+ k � p0 � k0)

2 2k 2k0 2p 2p0

⇥ {fpfk[1 + fp0 ][1 + fk0 ]� fp0fk0 [1 + fp][1 + fk]},
(A1)

C1$2[f ](p) =
(2⇡)3

2p2

Z 1

0

dp0dk0 �p

p0,k0(m,T⇤)

⇥ {fp[1 + fp0 ][1 + fk0 ]� fp0fk0 [1 + fp]}�(p� p0 � k0)

+
(2⇡)3

p2

Z 1

0

dp0dk �p
0

p,k
(m,T⇤) �(p+ k � p0)

⇥ {fpfk[1 + fp0 ]� fp0 [1 + fp][1 + fk]}. (A2)

The elastic kernel given in Eq. (A1) depends on the e↵ec-
tive in-medium matrix element |M(m)|2. As the vacuum
elastic scattering has a 1/t2 ⇠

1

q4
(and 1/u2) infrared di-

vergence, with momentum transfer q = |p�p0
|, it makes

the soft small angle scattering contribution to the scatter-
ing kernel diverge. This divergence is, however, regulated
by the the physics of in-medium screening. A prescrip-
tion that is accurate to leading order was given in [17] by
the replacement

(s� u)

t
!

(s� u)

t

q2

q2 + ⇠2m2
, ⇠LO =

e5/6

2
p
2
, (A3)

where at LO ⇠ is fixed to ⇠LO, so as to reproduce the LO
longitudinal momentum di↵usion coe�cient [22, 24].

3
Our matrix element is related to that of [10] by |M|2 =
P

bcd
|Mab

cd
|2/⌫, f = fa, and � = �g

gg/⌫.
R
p ⌘

R
d
3
p

(2⇡)3
and

⌫ = 2dA for gluons.
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hard2to2

ways this divergence can be regulated. At leading and next-to-leading we find
it convenient16 to simply cuto↵ the transverse momentum exchange at small q?,
q? > µ. It is not di�cult to extract the logarithmic dependence on µ for µ ⌧

T . Indeed, let us consider for illustration a leading-log approximation to C2$2[µ]:
we expand the distribution function and matrix elements to second order in the
exchange momentum Q and arrive at a Fokker-Planck equation21–23 for fp

C2$2[µ] = êUV (µ) v
i
@fp

@pi
+

1

2
q̂
ij

UV (µ)
@
2
fp

@pi@pj
+O

✓
T

p

◆
+ µ-independent , (12){eq:twotwoexpand}

In writing this equation we have dropped terms suppressed by T/p. Here v̂ is a unit
vector in the direction of p, and the di↵usion tensor qijUV (µ) controls the longitudinal
and transverse momentum di↵usion,

q̂
ij

UV (µ) ⌘ q̂L,UV (µ)v̂
i
v̂
j +

1

2
q̂UV (µ)(�

ij
� v̂

i
v̂
j) . (13)

The values of these coe�cients are found from the expansion of Eq. (10), and for
pure gauge are at leading log

q̂UV (µ) =g
2
CAT

m
2

D

2⇡
log

✓
T

µ

◆
, (14){uvqhat}

q̂L,UV (µ) =g
2
CAT

m
2
1

2⇡
log

✓
T

µ

◆
. (15)

Here the Debye mass is given by the integral over distribution functions

m
2

D
= 2g2CA

Z
d
3
p

(2⇡)3
np(1 + np)

T
=

1

3
g
2
CAT

2
, (16){eq:md}

and the asymptotic mass is given by a similar integral in Eq. (8). At this point
the interpretation of these thermodynamic integrals as the Debye and asymptotic
masses is premature. This interpretation will be clear from Sec. 3, which explains
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4

and that in the � ! 0-limit, the di↵erence between the
two NLO schemes vanishes faster than their di↵erence to
LO. This demonstrates that the correction is a true NLO
correction and is not a↵ected by the scheme di↵erences
that a↵ect the result beyond the NLO accuracy.

Extrapolating to higher values of 3 . � . 10, we see
that the di↵erence between the two NLO schemes be-
comes comparable to the size the of the NLO correc-
tion indicating quantitative sensitivity to corrections be-
yond the NLO. However, taking the di↵erence of the two
schemes as an estimate of the uncertainty, we observe
that, strikingly, the corrections remain below 10%-level
even for these large values.

At leading order, the thermalization time is parametri-
cally (up to logarithms) of order teq ⇠ (�2T )�1(Q/T )1/2

[26], related to the democratic splitting time of the par-
ticles at the scale Q to a thermal bath with tempera-
ture T . At NLO, we corrections are expected to arise at
the relative order �T/m ⇠

p
�. We find that that LO

thermalization time (defined by conditions (4) ) is well
described for � < 5 by a fit2

tLO

eq
⇡ �2

h
(Q/T )1/2(173.+ 9.8 log �)� 277.

i
(5)

For small � < 1 and 20 < Q < 80 the NLO correction in
both schemes is approximately given by

tLO
eq

tNLO
eq

⇡ 1 + �1/2
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0.22� 0.05 log

✓
Q

T

◆◆
(6)

IV. CONCLUSIONS:

The poor convergence of the perturbative series for sev-
eral di↵erent quantities has limited their usefulness in
phenomenological applications. In many cases, this poor
convergence arises from the soft corrections studied here.
This is the case for quantities such as transport coe�-
cients [] and thermal production rates. For the equation
of state, the first soft correction arising at �3/2 order nu-
merically overwhelms the leading correction of order �
for even extremely small values of � making the use of
perturbation theory questionable for all but extremely
high temperatures.

Our results for the NLO corrections to the Bottom-Up
thermalization o↵er a striking

• Why are corrections small (no qhat)

• what does this imply to bjoerken expanding case

2
Note that this thermalization time approximately agrees with

that of [1] but di↵ers slightly due to slightly di↵erent initial con-

ditions and the precise definition of thermalization time used.

Q/T � t̂LO

eq t̂NLO1

eq t̂NLO2

eq Q/T � t̂LO

eq t̂NLO1

eq t̂NLO2

eq

20 1 503.4 465.2 473.2 35 0.1 623.4 614.5 615.7

40 1 818.7 784.1 791.8 35 0.5 707.5 683.3 687.6

60 1 1060.0 1039.1 1044.4 35 1 749.3 712.5 720.7

80 1 1263.9 1261.5 1263.2 35 5 859.4 764.5 803.4

100 1 1443.4 1462.2 1459.8 35 10 910.5 774.3 849.5

20 5 588.4 489.5 528.8 50 0.1 798.9 791.7 793.3

40 5 934.6 845.5 882.4 50 0.5 897.3 878.6 882.0

60 5 1193.8 1142.4 1163.5 50 1 945.5 916.9 923.6

80 5 1409.5 1410.4 1408.9 50 5 1070.9 998.6 1028.7

100 5 1599.2 1661.6 1630.4 50 10 1129.1 1027.6 1086.4

TABLE I. Table of thermalization time t̂eq ⌘ teq/(�
2
T) for

di↵erent initial conditions Q/T and values of the coupling
constant �.

Appendix A: Definitions and implementations of the

kinetic theory

1. Leading order kinetic theory

The precise form of the LO collision operator reads 3

C2$2[f ](p) =

Z

k,p0,k0

|M(m)|2(2⇡)4�(4)(p+ k � p0 � k0)

2 2k 2k0 2p 2p0

⇥ {fpfk[1 + fp0 ][1 + fk0 ]� fp0fk0 [1 + fp][1 + fk]},
(A1)

C1$2[f ](p) =
(2⇡)3

2p2

Z 1

0

dp0dk0 �p

p0,k0(m,T⇤)

⇥ {fp[1 + fp0 ][1 + fk0 ]� fp0fk0 [1 + fp]}�(p� p0 � k0)

+
(2⇡)3

p2

Z 1

0

dp0dk �p
0

p,k
(m,T⇤) �(p+ k � p0)

⇥ {fpfk[1 + fp0 ]� fp0 [1 + fp][1 + fk]}. (A2)

The elastic kernel given in Eq. (A1) depends on the e↵ec-
tive in-medium matrix element |M(m)|2. As the vacuum
elastic scattering has a 1/t2 ⇠

1

q4
(and 1/u2) infrared di-

vergence, with momentum transfer q = |p�p0
|, it makes

the soft small angle scattering contribution to the scatter-
ing kernel diverge. This divergence is, however, regulated
by the the physics of in-medium screening. A prescrip-
tion that is accurate to leading order was given in [17] by
the replacement

(s� u)

t
!

(s� u)

t

q2

q2 + ⇠2m2
, ⇠LO =

e5/6

2
p
2
, (A3)

where at LO ⇠ is fixed to ⇠LO, so as to reproduce the LO
longitudinal momentum di↵usion coe�cient [22, 24].

3
Our matrix element is related to that of [10] by |M|2 =
P

bcd
|Mab

cd
|2/⌫, f = fa, and � = �g

gg/⌫.
R
p ⌘

R
d
3
p

(2⇡)3
and

⌫ = 2dA for gluons.
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(p, 0)

(p� !,�q?)

(!, q?)

Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (pz ,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1

⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads

�E(h, p,!) '
h
2

2p!(p� !)
+

m
2
1!

2!
+

m
2
1 p�!

2(p� !)
�

m
2
1 p

2p
, (33){defdeltaE}

wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is

• Mean free time between soft collisions 
 comparable to formation time ⇒ 

many such scatterings interfere, Landau-
Pomeranchuk-Migdal (LPM) effect

1/g2⟨p⟩
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Thermalisation

reviews in Schlichting Teaney Ann.Rev.Nucl.Part.Sci. 69 (2019)  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• Competition between expansion and interaction, attractor solution when 
they balance out

• Related topic of hydrodynamic attractors in kinetic theory and in holography 
Blaizot Yan (2017) Kurkela van der Schee Wiedemann Wu (2019) Giacalone 
Mazeliauskas Schlichting (2019) Almalook Kurkela Strickland (2020) 

• See talks by 

• Du, Plaschke, Ochsenfeld and Werthmann on EKT thermalisation later

• Scheihing-Hitschfeld on adiabatic hydrodinamisation later

• Mukhopadhyay and Mondkar on hydro attractors and holography 
tomorrow

Thermalisation
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• Competition between expansion and interaction, attractor solution when 
they balance out 
 

• Expansion is driven by the specifics of the heavy-ion collision and the initial 
state, drives the system away from equilibrium. Interaction among the 
constituents tends to isotropize the system.

Bottom-up thermalisation
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“Bottom-up” thermalisation scenario Baier, Mueller, Schi↵, and Son (2001)[10]

Evolution of initially over-occupied hard gluons p ⇠ Qs � ⇤QCD

pz pz pz

pxpxpx

2 $ 2 broadening collinear cascade mini-jet quench

Kurkela and Zhu (2015), Keegan, Kurkela, AM and Teaney (2016), Kurkela, AM, Paquet, Schlichting and Teaney (2018) [6–9]
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Motivation: Bottom-up thermalization
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thermalizing Baier et. al hep-ph/0009237, AK, Moore 1108.4684
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Baier Mueller Schiff Son (2001) Kurkela Moore (2011)

• Initially, strong isotropizing effect of transverse-momentum 
broadening 

• Later, transverse-momentum broadening acts as the driver of 
bremsstrahlung in the cascade and mini-jet quench, rapid transfer 
of energy from UV to IR without intermediate accumulation

∝ ̂q ≡ ⟨k2
⊥⟩/t
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• For transverse momentum broadening see talks by Caucal and Weitz 
tomorrow

• For early-time evolution see Carrington’s talk Thursday, Boguslavski’s talk 
today, Mrówczyński’s talk tomorrow 

Baier Mueller Schiff Son (2001) Kurkela Moore (2011)
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• From numerical solution of LO* kinetic theory

“Bottom-up” thermalisation scenario Baier, Mueller, Schi↵, and Son (2001)[10]
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Kurkela Zhu PRL115 (2015)

Bottom-up thermalisation: numerical solution
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Bottom-up thermalisation: plasma instabilities
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C2$2 + C1$2

• From numerical solution of LO* kinetic theory

• A complication arises in the case of anisotropies: plasma instabilities 
Mrowczynski (1993), Romatschke Strickland (2003), Arnold Lenaghan Moore 
(2003), Kurkela Moore (2011)

• No strict LO treatment with instabilities. Previous plot used isotropic screening

• Recently, instability subtracted momentum broadening kernel, together with a 
recipe for dealing with the instabilities, was provided in Hauksson Jeon Gale 
PRC105 (2022). Talk by Hauksson Tuesday discusses anisotropy effects on jets 

• Numerical solutions of classical lattice theory point to small numerical effect 
Berges Boguslavski Schlichting Venugopalan PRD89 (2013) 19



• Numerical solutions of AMY EKT extended to full QCD

Kurkela Mazeliauskas PRL122, PRD99 (2019) Du Schlichting PRL127, PRD104 (2021) 

Bottom-up thermalisation: quarks
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FIG. 15: Evolution of the phase-space distributions of gluons
(top) and quarks/anti-quarks (bottom) in an under-occupied

gluon system with �p�0 �Teq=30 at coupling �=1. Dashed
lines show the characteristic power law dependence of the
single emission LPM spectra (orange) and the Kolmogorov
Zakharov spectra (green). Dotted lines show the thermal
equilibrium distributions. Vertical arrows mark the Bethe-
Heitler frequencies !BH .
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sector, such that for su�ciently large scale separations�p�0
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� 1 the thermalization of the system occurs on time

scales t ∼ g−4T −1
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, which can be significantly larger

than the kinetic relaxation time ⌧R ∼ g−4T −1eq
.

2. Bottom Up Thermalization of Quark-Gluon Plasma

When considering the dynamics of under-occupied
QCD plasmas, we need to specify the initial conditions
for the momentum distribution and we can further dis-
tinguish di↵erent chemical compositions of the plasma.

5 Since quasi-democratic z ∼ 1�2 splittings dominate the turbulent
energy transfer [32, 75], this can be seen by evaluating Eq. (24)
for z ∼ 1�2
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FIG. 16: Evolution of the phase-space distributions of gluons
(top) and quarks/anti-quarks (bottom) in an under-occupied

gluon system with �p�0 �Teq=30 at coupling �=1. Dashed
lines show the characteristic power law dependence of the
single emission LPM spectra (orange) and the Kolmogorov
Zakharov spectra (green). Dotted lines show the thermal
equilibrium distributions. Vertical arrows mark the Bethe-
Heitler frequencies !BH .

We will limit our investigation to the following three
cases, corresponding to (1) an initially under-occupied
plasma of gluons, (2) an initially under-occupied plasma
of quarks/antiquarks, and (3) an initially under-occupied
plasma of quarks.

We will employ the following initial conditions for an
under-occupied plasma of gluons

fg(p, t = 0) = �2⌫qNf

⌫g
�f0e− (p−p0)2Q2 ,

fq(p, t = 0) = 0,
fq̄(p, t = 0) = 0 , (40)

while for an under-occupied plasma of quarks/antiquarks

fg(p, t = 0) = 0,
fq(p, t = 0) = f0e− (p−p0)2Q2 ,

fq̄(p, t = 0) = f0e− (p−p0)2Q2 , (41)

and for an under-occupied plasma of quarks, the system
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We will limit our investigation to the following three
cases, corresponding to (1) an initially under-occupied
plasma of gluons, (2) an initially under-occupied plasma
of quarks/antiquarks, and (3) an initially under-occupied
plasma of quarks.

We will employ the following initial conditions for an
under-occupied plasma of gluons

fg(p, t = 0) = �2⌫qNf

⌫g
�f0e− (p−p0)2Q2 ,

fq(p, t = 0) = 0,
fq̄(p, t = 0) = 0 , (40)

while for an under-occupied plasma of quarks/antiquarks

fg(p, t = 0) = 0,
fq(p, t = 0) = f0e− (p−p0)2Q2 ,

fq̄(p, t = 0) = f0e− (p−p0)2Q2 , (41)

and for an under-occupied plasma of quarks, the system

Du Schlichting PRD104 (2021) Du Schlichting PRD104 (2021) 
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Isotropic thermalisation at NLO

Fu JG Iqbal Kurkela PRD105 (2022)
21



• In the following we concentrate on the idealised case where the 
distribution is isotropic, f(p)=f(p), there is no expansion and pure glue

• This is a good description of the latest thermalisation stage, and can also 
be a toy model for the early stage

• Full leading-order results presented in  
Aabrao York Kurkela Lu Moore PRD89 (2014) 
Kurkela Lu PRL113 (2014)

Isotropic thermalisation at NLO

Fu JG Iqbal Kurkela PRD105 (2022)
21



• The NLO O(g) corrections come from soft gluons.  
Known for jets coupled to thermal bath or for small  
deviations from equilibrium, arise from  soft classical gluons 
JG Moore Teaney (2015-18)

• Why would they be applicable to a far-from-equilibrium system,  ?

• It turns out the  processes very rapidly create and maintain such a soft 
classical bath

T/p

fp ≠ nB(p)

1 ↔ 2

g g

nB(p) ∼ T/p ∼ 1/g

NLO kinetics and transport

see e.g. Aabrao Kurkela Lu Moore (2014) Kurkela Lu (2014) Blaizot Liao Mehtar-Tani (2017)
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• The NLO O(g) corrections come from soft gluons.  
Known for jets coupled to thermal bath or for small  
deviations from equilibrium, arise from  soft classical gluons 
JG Moore Teaney (2015-18)

• Why would they be applicable to a far-from-equilibrium system,  ?

• It turns out the  processes very rapidly create and maintain such a soft 
classical bath in their Bethe-Heitler (soft radiated gluon) region
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Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (pz ,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
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⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads
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wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is

see e.g. Aabrao Kurkela Lu Moore (2014) Kurkela Lu (2014) Blaizot Liao Mehtar-Tani (2017)
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see e.g. Aabrao Kurkela Lu Moore (2014) Kurkela Lu (2014) Blaizot Liao Mehtar-Tani (2017)
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• Define , fixed point in collision operator for T* ≡
∫ dk k2 fk(1 + fk)

2 ∫ dk k fk
fp≪⟨p⟩ =

T*

p
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1 ↔ 2

g g

nB(p) ∼ T/p ∼ 1/g

NLO kinetics and transport
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• Define , fixed point in collision operator for T* ≡
∫ dk k2 fk(1 + fk)

2 ∫ dk k fk
fp≪⟨p⟩ =

T*

p
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FIG. 15: Evolution of the phase-space distributions of gluons
(top) and quarks/anti-quarks (bottom) in an under-occupied

gluon system with �p�0 �Teq=30 at coupling �=1. Dashed
lines show the characteristic power law dependence of the
single emission LPM spectra (orange) and the Kolmogorov
Zakharov spectra (green). Dotted lines show the thermal
equilibrium distributions. Vertical arrows mark the Bethe-
Heitler frequencies !BH .

pression of inelastic rates for high-energy particles 5

�eq

inel
(�p�0) ∼ g4Teq

�
Teq�p�0 , the energy loss of the hard pri-

maries is slow compared to the equilibration of the soft
sector, such that for su�ciently large scale separations�p�0
Teq
� 1 the thermalization of the system occurs on time

scales t ∼ g−4T −1
eq

� �p�0
Teq

, which can be significantly larger

than the kinetic relaxation time ⌧R ∼ g−4T −1eq
.

2. Bottom Up Thermalization of Quark-Gluon Plasma

When considering the dynamics of under-occupied
QCD plasmas, we need to specify the initial conditions
for the momentum distribution and we can further dis-
tinguish di↵erent chemical compositions of the plasma.

5 Since quasi-democratic z ∼ 1�2 splittings dominate the turbulent
energy transfer [32, 75], this can be seen by evaluating Eq. (24)
for z ∼ 1�2
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FIG. 16: Evolution of the phase-space distributions of gluons
(top) and quarks/anti-quarks (bottom) in an under-occupied

gluon system with �p�0 �Teq=30 at coupling �=1. Dashed
lines show the characteristic power law dependence of the
single emission LPM spectra (orange) and the Kolmogorov
Zakharov spectra (green). Dotted lines show the thermal
equilibrium distributions. Vertical arrows mark the Bethe-
Heitler frequencies !BH .

We will limit our investigation to the following three
cases, corresponding to (1) an initially under-occupied
plasma of gluons, (2) an initially under-occupied plasma
of quarks/antiquarks, and (3) an initially under-occupied
plasma of quarks.

We will employ the following initial conditions for an
under-occupied plasma of gluons

fg(p, t = 0) = �2⌫qNf

⌫g
�f0e− (p−p0)2Q2 ,

fq(p, t = 0) = 0,
fq̄(p, t = 0) = 0 , (40)

while for an under-occupied plasma of quarks/antiquarks

fg(p, t = 0) = 0,
fq(p, t = 0) = f0e− (p−p0)2Q2 ,

fq̄(p, t = 0) = f0e− (p−p0)2Q2 , (41)

and for an under-occupied plasma of quarks, the system

Du Schlichting PRD104 (2021) 

see e.g. Aabrao Kurkela Lu Moore (2014) Kurkela Lu (2014) Blaizot Liao Mehtar-Tani (2017)
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• The NLO O(g) corrections come from soft gluons.  
Known for jets coupled to thermal bath or for small  
deviations from equilibrium, arise from  soft classical gluons

• 2↔︎2 processes with soft gluon loop or soft gluon legs: in  
soft region (Q≪p,k) these are encoded in longitudinal and  
transverse momentum diffusion. Isotropizing effect of  
transverse momentum broadening

• 1↔︎2 processes with one-loop soft scatterings from the  
medium or with wider-angle radiation. Radiation-inducing 
effect of transverse momentum broadening

T/p
January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss

6 J. Ghiglieri and D. Teaney

p

p0

Q

k0

k

Fig. 1. Hard 2 $ 2 collision contributing the collision rate C2$2[µ]. Only hard lines which
enter or exit the boxed region are included in an e↵ective Boltzmann description.

hard2to2

ways this divergence can be regulated. At leading and next-to-leading we find
it convenient16 to simply cuto↵ the transverse momentum exchange at small q?,
q? > µ. It is not di�cult to extract the logarithmic dependence on µ for µ ⌧

T . Indeed, let us consider for illustration a leading-log approximation to C2$2[µ]:
we expand the distribution function and matrix elements to second order in the
exchange momentum Q and arrive at a Fokker-Planck equation21–23 for fp

C2$2[µ] = êUV (µ) v
i
@fp

@pi
+

1

2
q̂
ij

UV (µ)
@
2
fp

@pi@pj
+O

✓
T

p

◆
+ µ-independent , (12){eq:twotwoexpand}

In writing this equation we have dropped terms suppressed by T/p. Here v̂ is a unit
vector in the direction of p, and the di↵usion tensor qijUV (µ) controls the longitudinal
and transverse momentum di↵usion,

q̂
ij

UV (µ) ⌘ q̂L,UV (µ)v̂
i
v̂
j +

1

2
q̂UV (µ)(�

ij
� v̂

i
v̂
j) . (13)

The values of these coe�cients are found from the expansion of Eq. (10), and for
pure gauge are at leading log

q̂UV (µ) =g
2
CAT

m
2

D

2⇡
log

✓
T

µ

◆
, (14){uvqhat}

q̂L,UV (µ) =g
2
CAT

m
2
1

2⇡
log

✓
T

µ

◆
. (15)

Here the Debye mass is given by the integral over distribution functions

m
2

D
= 2g2CA

Z
d
3
p

(2⇡)3
np(1 + np)

T
=

1

3
g
2
CAT

2
, (16){eq:md}

and the asymptotic mass is given by a similar integral in Eq. (8). At this point
the interpretation of these thermodynamic integrals as the Debye and asymptotic
masses is premature. This interpretation will be clear from Sec. 3, which explains

JG Moore Teaney (2015-18)

3. Corrections to Bremm:

(a) Small angle bremm. Corrections to AMY coll. kernel. (Caron-Huot)

✓ ⇠ mD/E

Q = (q+, q�, q?) = (gT, g2T , gT )

ĈLO[q?] =
Tg

2
m

2
D

q2
?(q2

? + m2
D

)
! A complicated but analytic formula

(b) Large angle brem and collisions with plasmons.

• Include collisions with energy exchange, q� ⇠ gT .

✓ ⇠
p

mD/E

Q = (q+, q�, q?) = (gT, gT , gT )

The large-angle (semi-collinear radiation) interpolates collisional and rad. loss

NLO kinetics and transport

g g

nB(p) ∼ T/p ∼ 1/g
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• In principle these are horrible brute-force Hard Thermal Loop 
computations

• Key advancement over the past decade: analytical properties of soft thermal 
amplitudes at light-like separations. Heuristically, the hard, light-like parton 
sees undisturbed soft modes, which “can’t keep up” with it  
Caron-Huot PRD82 (2008) 

• In practice: tremendous simplification, analytical closed forms and possibility 
of non-perturbative input (see talk by Schicho later) 

• We thus have all corrections of order . An important simplification: 
no  in the 2↔︎2 processes, because of isotropy

g2T*/m
̂q

NLO kinetics and transport
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• We consider underoccupied and overoccupied initial conditions for a 
system of gluons only and we solve the EKT numerically

• In the underoccupied case a large-momentum gaussian (Q≫Tfinal≡T) with 
a thermal bath carrying 10% of the initial energy 
 

• In the overoccupied case the scaling solution arising from the classical 
lattice theory

Initial conditions

Fu JG Iqbal Kurkela PRD105 (2022)
25

Motivation: Bottom-up thermalization

Anisotropy

Occupancy

f~α
−1

 P
L
/P

T
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f~1f~α
Thermal

Initial condition: Qt~1

Underoccupied Overoccupied

Radiational 
breakup Qt~α−13/5

CGC: Initial condition overoccupied f (Q) ⇠ 1/↵

Expansion makes system underoccupied (f (Q) ⌧ 1) before
thermalizing Baier et. al hep-ph/0009237, AK, Moore 1108.4684

fig. Kurkela



• We consider underoccupied and overoccupied initial conditions for a 
system of gluons only and we solve the EKT numerically

• In the underoccupied case a large-momentum gaussian (Q≫Tfinal≡T) with 
a thermal bath carrying 10% of the initial energy 
 

• In the overoccupied case the scaling solution arising from the classical 
lattice theory

3

FIG. 1. Time evolution of the initial condition (3) toward
thermal equilibrium. The blue solid line is the initial con-
dition consisting of two components: the soft thermal bath
and gaussian peak around the value p=Q = 50T. The thick
(thin) dashed lines show the time evolution of NLO kinetic
theory(scheme 2) with � = 5 intermediate states at times 200,
400, 600 and 800.

FIG. 2. Time evolution of the initial condition (3) toward
thermal equilibrium. The blue solid line is the initial con-
dition consisting of two components: the soft thermal bath
and gaussian peak around the value p=Q = 50T. The thick
(thin) dashed lines show the time evolution of NLO kinetic
theory(scheme 2) with � = 5 intermediate states at times 200,
400, 600 and 800.

comment about lack of NLO qhat. Maybe in conclu-
sions, to comment that our moderate NLO corrections
are not in disagreement with the large ones observed
for transport, since those are mostly due to NLO qhat,
which is missing here since the Landau expansion (small
!, q) of Eq. (A1) only generates terms proportional to
! when expanding the distribution functions. And for
soft exchange ! � q · p̂ ⇡ 0, so this only ever generates
longitudinal momentum di↵usion.

• The LO and NLO setup is correct only for T/Q ⌧

�2. If this is the case, the momentum transfer in
the AMY equation C(q?) has q? NLO1 is more
sensitive to this.

• T/m = 1 for � = 3.

C. initial conditions

For the initial conditions we will use a gaussian form
centered around a characteristic momentum scale Q. In
order to imitate the situation in the last stage of Bottom-
up thermalization, we embed this distribution of hard
particles in a soft thermal bath that carries 10% of the
total energy density of the initial condition

f(p) = Ae
� (p�Q)2

(Q/10)2 + nB(p, Tinit), (3)

where A and Tinit are A ⇡ (0.418864Q/T )4 and Tinit/T ⇡

0.5623. nBis...

III. RESULTS

The thermalization process of a system initialised with
(3) is displayed in Fig. 2 for Q = 50 and � = 5 and
evolved with scheme 2prescription. The NLO evolution
shows the same characteristic features of Bottom-up ther-
malization as the LO evolution: the hard particles lose
energy through the radiational cascade heating the soft
thermal bath. Eventually the system thermalizes as the
hard jets are quenched in the thermal bath [26].
We determine a thermalization time for the system by

defining an e↵ective temperatures T↵

T↵ =


2⇡2

�(↵+ 3)⇣(↵+ 3)

Z
d3p

(2⇡)3
p↵f(p)

� 1
↵+3

which all coincide with T in equilibrium but di↵er for
a non-equilibrium system. We then define a (kinetic)
thermalization time using the condition[3]

(T0(teq)/T1(teq))
4 = 0.9. (4)

For the system in Fig.2, this condition is fulfilled for
�2Tt ⇡ 1029 denoted by the green dashed line. At this
point most of the energy is in the thermal bath.
We have determined the thermalization time for a va-

riety of initial momenta Q and di↵erent values of the
coupling constant � using both the LO as well as the two
NLO schemes; the results are documented in Tab. I and
displayed in Fig. ??. Our main results are that

• the qualitative e↵ect of the NLO corrections is to
reduce the time required for the thermalization

• and that the NLO corrections are well under control
for a wide range of coupling constants.

In the regime of small values of � . 3 — corresponding
to m . T in equilibrium so that the scale separations as-
sumed in the derivation of the kinetic theory are fulfilled
— the NLO corrections constitute merely a 5% reduction
of the thermalization time. It is reassuring to observe
that results from the two NLO schemes are close to each
other compared to the overall size of the NLO correction

Initial conditions

Fu JG Iqbal Kurkela PRD105 (2022)
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Results: distribution functions
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Results: energy densities

• Direct (overoccupied) and inverse (under) cascade
Fu JG Iqbal Kurkela PRD105 (2022)
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• At the thermalisation time the ratio between two moments of f (both equal 
to T in equilibrium) is 0.9

5

FIG. 3.

The e↵ective medium-induced collinear split-
ting/merging matrix element � is given by [10, 27]

�p

p0,k0(m,T⇤) =
�

32⇡4p

1 + x4 + (1� x)4

x3(1� x)3
Im(rb · F (0)),

(A4)
with the momentum fraction x = k/p and where F (b)
resums an arbitrary number of soft elastic scatterings in
the medium. It depends on two dimensionless variables

M̂ ⌘ 1� x+ x2, ⌘ ⌘
px(1� x)�T⇤

m2
g

, (A5)

where m2
g
= m2/2 is the LO mass for gluons with p � m.

Parametrically ⌘ is the ratio squared of the formation

time of the splitting process ⌧form ⇠
p
E/q̂ ⇠

q
x(1�x)p

�T⇤m2

and of the elastic scattering rate ⌧el ⇠ 1/�T⇤. F (b) is
the solution to this di↵erential equation [10, 22, 27]

�2irb�
2(b) =

i

2px(1� x)
(M̂m2

g
�r

2

b)F (b)

+
1

2

⇣
C(b) + C(xb) + C((1� x)b)

⌘
F (b),

(A6)

C(b) is the Fourier transform of the soft scattering rate,

C(b) =

Z
dq2?
(2⇡)2

(1� eib·q?)
d�(q?)

d2q?
. (A7)

In an isotropic medium it reads

C(b) =
�T⇤
2⇡

✓
K0(bm) + �E + log

✓
bm

2

◆◆
. (A8)

By rescaling b = b̃/mg and F = 2px(1 � x)/m2
g
F̃ , the

coe�cient of the second line fo Eq. (A6) becomes propor-
tional to ⌘. The method presented in [28] is then used
for the numerical solution.

2. Next-to-leading order kinetic theory

Let us start by discussing the corrections to Eq. (A4).
As shown in [22], its form remains valid at NLO, but
the LPM resummation in Eq. (A6) must include two
O(�T⇤/m) corrections. The dispersion relation gets
shifted to m2

gNLO = m2
g
+ �m2

g
and the soft scattering

kernel is modified in CNLO(b) = C(b) + �C(b). For an
isotropic state with an IR T⇤/p occupancy, the equilib-
rium results for �m2

g
[13] and �C(b) [12, 14] can be used

with the replacement T ! T⇤, mD ! m. The former
reads

�m2

g
= �

�T⇤m

2⇡
. (A9)

In our first implementation, i.e. scheme 1, we treat �m2
g

and �C(b) as perturbations to their LO counterparts.
Hence F is perturbed as FNLO = F + �F , and the lat-
ter is computed exactly as in App. E of [22].4 The re-
sulting �NLO = � + �� can become problematic when
extrapolated to large values of ⌘ and �T⇤/m. As per
its definition, large values of ⌘ correspond to formation
times larger than the mean free time for soft scatterings,
so that rarer, harder scatterings, which are not included
in the form (A8) of the scattering kernel, would have
a chance to occur. As shown in [18], for ⌘ & (T⇤/m)4

scatterings with q? ⇠ T⇤ would need to be included,
which is far from trivial in an o↵-equilibrium setting. At
LO one can however expect, as in equilibrium, that the
approximation introduced by extrapolating Eq. (A8) to
⌘ & (T⇤/m)4 amounts in an overestimate of � at the 10-
20% level. That happens because large value of ⌘ privi-
lege the small-b form of C(b), which at leading order is ap-
proximated by �T⇤m2b2 ln(1/bm), with a coe�cient that

4 b here corresponds to pb there, FNLO here corresponds to

p3(F0 + F1) there. �C(b) can be found in [14].

Results: thermalisation times

Fu JG Iqbal Kurkela PRD105 (2022)
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ting/merging matrix element � is given by [10, 27]
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1 + x4 + (1� x)4
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= m2/2 is the LO mass for gluons with p � m.

Parametrically ⌘ is the ratio squared of the formation

time of the splitting process ⌧form ⇠
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F̃ , the

coe�cient of the second line fo Eq. (A6) becomes propor-
tional to ⌘. The method presented in [28] is then used
for the numerical solution.

2. Next-to-leading order kinetic theory

Let us start by discussing the corrections to Eq. (A4).
As shown in [22], its form remains valid at NLO, but
the LPM resummation in Eq. (A6) must include two
O(�T⇤/m) corrections. The dispersion relation gets
shifted to m2

gNLO = m2
g
+ �m2

g
and the soft scattering

kernel is modified in CNLO(b) = C(b) + �C(b). For an
isotropic state with an IR T⇤/p occupancy, the equilib-
rium results for �m2

g
[13] and �C(b) [12, 14] can be used

with the replacement T ! T⇤, mD ! m. The former
reads
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g
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2⇡
. (A9)

In our first implementation, i.e. scheme 1, we treat �m2
g

and �C(b) as perturbations to their LO counterparts.
Hence F is perturbed as FNLO = F + �F , and the lat-
ter is computed exactly as in App. E of [22].4 The re-
sulting �NLO = � + �� can become problematic when
extrapolated to large values of ⌘ and �T⇤/m. As per
its definition, large values of ⌘ correspond to formation
times larger than the mean free time for soft scatterings,
so that rarer, harder scatterings, which are not included
in the form (A8) of the scattering kernel, would have
a chance to occur. As shown in [18], for ⌘ & (T⇤/m)4

scatterings with q? ⇠ T⇤ would need to be included,
which is far from trivial in an o↵-equilibrium setting. At
LO one can however expect, as in equilibrium, that the
approximation introduced by extrapolating Eq. (A8) to
⌘ & (T⇤/m)4 amounts in an overestimate of � at the 10-
20% level. That happens because large value of ⌘ privi-
lege the small-b form of C(b), which at leading order is ap-
proximated by �T⇤m2b2 ln(1/bm), with a coe�cient that

4 b here corresponds to pb there, FNLO here corresponds to

p3(F0 + F1) there. �C(b) can be found in [14].

• Two different NLO schemes which resum differently higher-order effects: 
proxy for even higher-order effects

Fu JG Iqbal Kurkela PRD105 (2022)
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• NLO corrections under reasonable control, at most 40% at λ=10

5

FIG. 3.

The e↵ective medium-induced collinear split-
ting/merging matrix element � is given by [10, 27]

�p

p0,k0(m,T⇤) =
�

32⇡4p

1 + x4 + (1� x)4

x3(1� x)3
Im(rb · F (0)),

(A4)
with the momentum fraction x = k/p and where F (b)
resums an arbitrary number of soft elastic scatterings in
the medium. It depends on two dimensionless variables

M̂ ⌘ 1� x+ x2, ⌘ ⌘
px(1� x)�T⇤

m2
g

, (A5)

where m2
g
= m2/2 is the LO mass for gluons with p � m.

Parametrically ⌘ is the ratio squared of the formation

time of the splitting process ⌧form ⇠
p
E/q̂ ⇠

q
x(1�x)p

�T⇤m2

and of the elastic scattering rate ⌧el ⇠ 1/�T⇤. F (b) is
the solution to this di↵erential equation [10, 22, 27]

�2irb�
2(b) =

i

2px(1� x)
(M̂m2

g
�r

2

b)F (b)

+
1

2

⇣
C(b) + C(xb) + C((1� x)b)

⌘
F (b),

(A6)

C(b) is the Fourier transform of the soft scattering rate,

C(b) =

Z
dq2?
(2⇡)2

(1� eib·q?)
d�(q?)

d2q?
. (A7)

In an isotropic medium it reads

C(b) =
�T⇤
2⇡
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K0(bm) + �E + log

✓
bm
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. (A8)

By rescaling b = b̃/mg and F = 2px(1 � x)/m2
g
F̃ , the

coe�cient of the second line fo Eq. (A6) becomes propor-
tional to ⌘. The method presented in [28] is then used
for the numerical solution.

2. Next-to-leading order kinetic theory

Let us start by discussing the corrections to Eq. (A4).
As shown in [22], its form remains valid at NLO, but
the LPM resummation in Eq. (A6) must include two
O(�T⇤/m) corrections. The dispersion relation gets
shifted to m2

gNLO = m2
g
+ �m2

g
and the soft scattering

kernel is modified in CNLO(b) = C(b) + �C(b). For an
isotropic state with an IR T⇤/p occupancy, the equilib-
rium results for �m2

g
[13] and �C(b) [12, 14] can be used

with the replacement T ! T⇤, mD ! m. The former
reads

�m2

g
= �

�T⇤m

2⇡
. (A9)

In our first implementation, i.e. scheme 1, we treat �m2
g

and �C(b) as perturbations to their LO counterparts.
Hence F is perturbed as FNLO = F + �F , and the lat-
ter is computed exactly as in App. E of [22].4 The re-
sulting �NLO = � + �� can become problematic when
extrapolated to large values of ⌘ and �T⇤/m. As per
its definition, large values of ⌘ correspond to formation
times larger than the mean free time for soft scatterings,
so that rarer, harder scatterings, which are not included
in the form (A8) of the scattering kernel, would have
a chance to occur. As shown in [18], for ⌘ & (T⇤/m)4

scatterings with q? ⇠ T⇤ would need to be included,
which is far from trivial in an o↵-equilibrium setting. At
LO one can however expect, as in equilibrium, that the
approximation introduced by extrapolating Eq. (A8) to
⌘ & (T⇤/m)4 amounts in an overestimate of � at the 10-
20% level. That happens because large value of ⌘ privi-
lege the small-b form of C(b), which at leading order is ap-
proximated by �T⇤m2b2 ln(1/bm), with a coe�cient that

4 b here corresponds to pb there, FNLO here corresponds to

p3(F0 + F1) there. �C(b) can be found in [14].

Fu JG Iqbal Kurkela PRD105 (2022)
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FIG. 3.

The e↵ective medium-induced collinear split-
ting/merging matrix element � is given by [10, 27]

�p

p0,k0(m,T⇤) =
�

32⇡4p

1 + x4 + (1� x)4

x3(1� x)3
Im(rb · F (0)),

(A4)
with the momentum fraction x = k/p and where F (b)
resums an arbitrary number of soft elastic scatterings in
the medium. It depends on two dimensionless variables

M̂ ⌘ 1� x+ x2, ⌘ ⌘
px(1� x)�T⇤

m2
g

, (A5)

where m2
g
= m2/2 is the LO mass for gluons with p � m.

Parametrically ⌘ is the ratio squared of the formation

time of the splitting process ⌧form ⇠
p
E/q̂ ⇠

q
x(1�x)p

�T⇤m2

and of the elastic scattering rate ⌧el ⇠ 1/�T⇤. F (b) is
the solution to this di↵erential equation [10, 22, 27]
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C(b) is the Fourier transform of the soft scattering rate,

C(b) =

Z
dq2?
(2⇡)2

(1� eib·q?)
d�(q?)

d2q?
. (A7)

In an isotropic medium it reads

C(b) =
�T⇤
2⇡
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. (A8)

By rescaling b = b̃/mg and F = 2px(1 � x)/m2
g
F̃ , the

coe�cient of the second line fo Eq. (A6) becomes propor-
tional to ⌘. The method presented in [28] is then used
for the numerical solution.

2. Next-to-leading order kinetic theory

Let us start by discussing the corrections to Eq. (A4).
As shown in [22], its form remains valid at NLO, but
the LPM resummation in Eq. (A6) must include two
O(�T⇤/m) corrections. The dispersion relation gets
shifted to m2

gNLO = m2
g
+ �m2

g
and the soft scattering

kernel is modified in CNLO(b) = C(b) + �C(b). For an
isotropic state with an IR T⇤/p occupancy, the equilib-
rium results for �m2

g
[13] and �C(b) [12, 14] can be used

with the replacement T ! T⇤, mD ! m. The former
reads

�m2

g
= �

�T⇤m

2⇡
. (A9)

In our first implementation, i.e. scheme 1, we treat �m2
g

and �C(b) as perturbations to their LO counterparts.
Hence F is perturbed as FNLO = F + �F , and the lat-
ter is computed exactly as in App. E of [22].4 The re-
sulting �NLO = � + �� can become problematic when
extrapolated to large values of ⌘ and �T⇤/m. As per
its definition, large values of ⌘ correspond to formation
times larger than the mean free time for soft scatterings,
so that rarer, harder scatterings, which are not included
in the form (A8) of the scattering kernel, would have
a chance to occur. As shown in [18], for ⌘ & (T⇤/m)4

scatterings with q? ⇠ T⇤ would need to be included,
which is far from trivial in an o↵-equilibrium setting. At
LO one can however expect, as in equilibrium, that the
approximation introduced by extrapolating Eq. (A8) to
⌘ & (T⇤/m)4 amounts in an overestimate of � at the 10-
20% level. That happens because large value of ⌘ privi-
lege the small-b form of C(b), which at leading order is ap-
proximated by �T⇤m2b2 ln(1/bm), with a coe�cient that

4 b here corresponds to pb there, FNLO here corresponds to

p3(F0 + F1) there. �C(b) can be found in [14].

JG Moore Teaney (2018)

Fu JG Iqbal Kurkela PRD105 (2022)
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• Bottom-up as the weak-coupling description of thermalisation 

• The effective kinetic theory is the tool for its quantitative study

• For isotropic far-from-equilibrium systems, it is possible to study the 
problem systematically and even address higher-order corrections

• These are reasonably well-behaved. Lack of isotropizing effect of  likely 
explanation

• Care needed when using LO kinetic theories with 

̂q

g2T*/m ≳ 1

Conclusions
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• From numerical solution of classical lattice theory  7

BGLMV (const. anisotropy)

BMSS (elastic scattering)

 Turbulence exponents:

 
α  = -2/3

 
, β = 0 , γ = 1/3 BD (plasma instabilities)

 

KM (plasma instabilities)
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FIG. 5. Evolution in the occupancy–anisotropy plane. In-

dicated are the attractor solutions proposed in (BMSS) [1],

(BD) [23], (KM) [25] and (BGLMV) [26], along with the sim-

ulations results for di↵erent initial conditions shown in blue.

While the original work by Baier, Mueller, Schi↵ and
Son [1] (BMSS) determines the basic properties of the
kinetic evolution from self-consistency arguments, the
self-similar behavior observed from numerical simula-
tions indicates that the framework of turbulent ther-
malization [36] can be applied. We continue this anal-
ysis by plugging the self-similar distribution (10) into
C(elast)[pT , pz; f ] to extract the scaling behavior µ =
3↵� 2� + �. The scaling relation in eq. (15), then reads
2↵�2�+�+1 = 0. Since elastic scattering processes are
particle number conserving, a further scaling relation is
obtained from integrating the distribution function over
pT and rapidity wave numbers ⌫ = pz⌧ . By use of the
scaling form (10), particle number conservation leads to
the scaling relation ↵�2���+1 = 0. Similarly, approxi-
mating the mode energy of hard excitations as !p ' pT in
the anisotropic scaling limit, energy conservation yields
the final scaling condition ↵� 3� � � + 1 = 0.

Remarkably, the above scaling relations are indepen-
dent of many of the details of the underlying field the-
ory such as the number of colors, the coupling constant
as well as the initial conditions. Instead, they only de-
pend on the dominant type of kinetic interactions (such
as 2 $ 2 or 2 $ 3 scattering processes), the con-
served quantities of the system and the number of dimen-
sions. More specifically, the dynamics of small-angle elas-
tic scattering, along with the conservation laws of quasi-
particle number and energy provide the three equations
to determine the scaling exponents. These are straight-
forwardly extracted to be

↵ = �2/3 , � = 0 , � = 1/3 , (18)

in good agreement with those extracted from our lattice
simulations of the temporal evolution of gauge invariant
observables.

The close agreement of the lattice simulations with the

bottom-up scenario appears surprising at first. While in
the latter, it is the Debye scale that provides the scale
for multiple incoherent elastic scatterings and the con-
sequent broadening of the longitudinal momentum, the
one loop self-energy for anisotropic momentum distri-
butions could lead to plasma instabilities even at times
⌧ & Q�1 log2(↵�1

S ). The impact of plasma instabilities
on the first stage of the bottom-up scenario has been con-
sidered in [23] (BD). In this scenario, plasma instabili-
ties create an overpopulation of the unstable soft modes
f(p ⇠ mD) ⇠ 1/↵S , such that the interaction of hard ex-
citations with the highly populated soft modes becomes
the dominant process. This process leads to a more e�-
cient momentum broadening in the longitudinal direction
and changes the evolution of the characteristic momen-
tum scales and occupancies. Similar considerations, al-
beit including a di↵erent range of highly occupied unsta-
ble modes8, lead to the detailed weak coupling scenario
in [25] (KM). In this scenario, plasma instabilities play
a significant role for the entire thermalization process in
the classical regime and beyond. Yet another scenario of
how highly occupied expanding non-Abelian fields pro-
ceed toward thermalization was proposed in [26]. In this
scenario, it is conjectured that the combination of high
occupancy and elastic scattering can generate a transient
Bose-Einstein condensate. The evolution of this conden-
sate together with elastically scattering quasi-particle ex-
citations is argued to generate an attractor with fixed
PL/PT anisotropy parameter �s.
While all of these e↵ects can in principle be realized

and have interesting consequences for the subsequent
space-time evolution of the strongly correlated plasma,
the infrared physics of momenta around the Debye scale
is crucial in all these scenarios. The properties of this
highly non-linear non-Abelian dynamics can be resolved
conclusively through non-perturbative numerical simula-
tions, such as those performed here.
A compact summary of our results in comparison with

the di↵erent weak coupling thermalization scenarios is
shown in Fig. 5, describing the space-time evolution in
the occupancy–anisotropy plane. The horizontal axis
shows the occupancy nHard and the vertical axis the
momentum-space anisotropy in terms of the typical lon-
gitudinal and transverse momenta ⇤T,L. The gray lines
indicate the attractor solutions of the di↵erent thermal-
ization scenarios, while the blue lines show our simula-
tion results for di↵erent initial conditions. One immedi-
ately observes the attractor property, which appears to
be in good agreement with the analytical discussion of the
BMSS kinetic equation in the high-occupancy regime [5].
As noted previously, similar attractor solutions were

discovered in relativistic scalar theories that purport

8 The range of highly occupied unstable modes in this scenario
is determined within the hard-loop framework in Ref. [24] and
parametrically given by modes with momenta pT . mD and
pz . mD⇤T /⇤L.

Berges Boguslavski Schlichting Venugopalan PRD89 (2013)

Bottom-up thermalisation: plasma instabilities



• The NLO corrections are then those we just saw, with an important simplification: 
no  in the 2↔︎2 processes, because of isotropy 
 
 
 

• We thus have all corrections of order 

̂q

g2T*/m

4

and that in the � ! 0-limit, the di↵erence between the
two NLO schemes vanishes faster than their di↵erence to
LO. This demonstrates that the correction is a true NLO
correction and is not a↵ected by the scheme di↵erences
that a↵ect the result beyond the NLO accuracy.

Extrapolating to higher values of 3 . � . 10, we see
that the di↵erence between the two NLO schemes be-
comes comparable to the size the of the NLO correc-
tion indicating quantitative sensitivity to corrections be-
yond the NLO. However, taking the di↵erence of the two
schemes as an estimate of the uncertainty, we observe
that, strikingly, the corrections remain below 10%-level
even for these large values.

At leading order, the thermalization time is parametri-
cally (up to logarithms) of order teq ⇠ (�2T )�1(Q/T )1/2

[26], related to the democratic splitting time of the par-
ticles at the scale Q to a thermal bath with tempera-
ture T . At NLO, we corrections are expected to arise at
the relative order �T/m ⇠

p
�. We find that that LO

thermalization time (defined by conditions (4) ) is well
described for � < 5 by a fit2

tLO

eq
⇡ �2

h
(Q/T )1/2(173.+ 9.8 log �)� 277.

i
(5)

For small � < 1 and 20 < Q < 80 the NLO correction in
both schemes is approximately given by

tLO
eq

tNLO
eq

⇡ 1 + �1/2

✓
0.22� 0.05 log

✓
Q

T

◆◆
(6)

IV. CONCLUSIONS:

The poor convergence of the perturbative series for sev-
eral di↵erent quantities has limited their usefulness in
phenomenological applications. In many cases, this poor
convergence arises from the soft corrections studied here.
This is the case for quantities such as transport coe�-
cients [] and thermal production rates. For the equation
of state, the first soft correction arising at �3/2 order nu-
merically overwhelms the leading correction of order �
for even extremely small values of � making the use of
perturbation theory questionable for all but extremely
high temperatures.

Our results for the NLO corrections to the Bottom-Up
thermalization o↵er a striking

• Why are corrections small (no qhat)

• what does this imply to bjoerken expanding case

2
Note that this thermalization time approximately agrees with

that of [1] but di↵ers slightly due to slightly di↵erent initial con-

ditions and the precise definition of thermalization time used.

Q/T � t̂LO

eq t̂NLO1

eq t̂NLO2

eq Q/T � t̂LO

eq t̂NLO1

eq t̂NLO2

eq

20 1 503.4 465.2 473.2 35 0.1 623.4 614.5 615.7

40 1 818.7 784.1 791.8 35 0.5 707.5 683.3 687.6

60 1 1060.0 1039.1 1044.4 35 1 749.3 712.5 720.7

80 1 1263.9 1261.5 1263.2 35 5 859.4 764.5 803.4

100 1 1443.4 1462.2 1459.8 35 10 910.5 774.3 849.5

20 5 588.4 489.5 528.8 50 0.1 798.9 791.7 793.3

40 5 934.6 845.5 882.4 50 0.5 897.3 878.6 882.0

60 5 1193.8 1142.4 1163.5 50 1 945.5 916.9 923.6

80 5 1409.5 1410.4 1408.9 50 5 1070.9 998.6 1028.7

100 5 1599.2 1661.6 1630.4 50 10 1129.1 1027.6 1086.4

TABLE I. Table of thermalization time t̂eq ⌘ teq/(�
2
T) for

di↵erent initial conditions Q/T and values of the coupling
constant �.

Appendix A: Definitions and implementations of the

kinetic theory

1. Leading order kinetic theory

The precise form of the LO collision operator reads 3

C2$2[f ](p) =

Z

k,p0,k0

|M(m)|2(2⇡)4�(4)(p+ k � p0 � k0)

2 2k 2k0 2p 2p0

⇥ {fpfk[1 + fp0 ][1 + fk0 ]� fp0fk0 [1 + fp][1 + fk]},
(A1)

C1$2[f ](p) =
(2⇡)3

2p2

Z 1

0

dp0dk0 �p

p0,k0(m,T⇤)

⇥ {fp[1 + fp0 ][1 + fk0 ]� fp0fk0 [1 + fp]}�(p� p0 � k0)

+
(2⇡)3

p2

Z 1

0

dp0dk �p
0

p,k
(m,T⇤) �(p+ k � p0)

⇥ {fpfk[1 + fp0 ]� fp0 [1 + fp][1 + fk]}. (A2)

The elastic kernel given in Eq. (A1) depends on the e↵ec-
tive in-medium matrix element |M(m)|2. As the vacuum
elastic scattering has a 1/t2 ⇠

1

q4
(and 1/u2) infrared di-

vergence, with momentum transfer q = |p�p0
|, it makes

the soft small angle scattering contribution to the scatter-
ing kernel diverge. This divergence is, however, regulated
by the the physics of in-medium screening. A prescrip-
tion that is accurate to leading order was given in [17] by
the replacement

(s� u)

t
!

(s� u)

t

q2

q2 + ⇠2m2
, ⇠LO =

e5/6

2
p
2
, (A3)

where at LO ⇠ is fixed to ⇠LO, so as to reproduce the LO
longitudinal momentum di↵usion coe�cient [22, 24].

3
Our matrix element is related to that of [10] by |M|2 =
P

bcd
|Mab

cd
|2/⌫, f = fa, and � = �g

gg/⌫.
R
p ⌘

R
d
3
p

(2⇡)3
and

⌫ = 2dA for gluons.
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