LSST-France | May 18th 2022

Cosmic shear: from DES to Rubin/LSST

Cyrille Doux

LPSC GRENOBLE / IN2P3 / CNRS

GRENOBLE MODANE

- Cosmic shear 101
- Dark Energy Survey Year 3 analysis
 - Advances in shear/redshift calibration
 - Cosmological constraints
 - Outstanding issues
- Cosmic shear with LSST: new problems

Cosmic shear 101

- Dark Energy Survey Year 3 analysis
 - Advances in shear/redshift calibration
 - Cosmological constraints
 - Outstanding issues
- Cosmic shear with LSST: new problems

Weak gravitational lensing Cosmic shear

In practice, $|\gamma| \sim 0.01$ (in the field) to 0.1 (in clusters)

Weak gravitational lensing Cosmic shear

Over-density

Under-density

* Lengths do not scale

Cosmic shear power spectrum

$$C_{\ell}^{\gamma_{a}\gamma_{b}} = \int_{0}^{z_{\star}} dz \frac{H(z)}{c \chi(z)} W^{a}(z) W^{b}(z) P_{m}\left(k = \frac{\ell + 1/2}{\chi(z)}, z\right)$$

$$GEOMETRY$$

$$GROWTH$$

Matter power spectrum

Cosmic shear power spectrum

The cosmic shear power spectrum is a *projection* of the matter power spectrum !

Cosmic shear pipeline

- Cosmic shear 101
- Dark Energy Survey Year 3 analysis
 - Advances in shear/redshift calibration
 - Cosmological constraints
 - Outstanding issues
- Cosmic shear with LSST: new problems

The Dark Energy Survey

- Blanco 4-meter telescope at Cerro Tololo (CTIO) in Chile
- Dark Energy Camera (DECam)
 - ► 3.0 deg² field-of-view, 70 CCD chips, 570 Mpix, *griz(Y)* filters
 - ► Seeing ~0.9' in *r*-band, magnitude *i*_{AB}<23.0, *r*<23.5
- Survey(s)
 - 5000 deg² footprint + deep fields, observed 2013-2019
- DES Year 3 in numbers
 - ~100 people, ~100M galaxies, ~30 papers

DESY3 METACALIBRATION shape catalogue

- METACALIBRATION in a nutshell
 - ► For any *biased* shear estimator **e**,

$$\mathbf{e} = \mathbf{e}|_{\gamma=0} + \gamma \cdot \underbrace{\frac{\partial \mathbf{e}}{\partial \gamma}}_{\mathbf{R}_{\gamma}} + \mathcal{O}(\gamma^{3})$$

such that $\langle \hat{\gamma} \rangle \approx \langle \mathbf{R}_{\gamma} \rangle^{-1} \langle \mathbf{e} \rangle$ is *unbiased*

- Mitigates model+noise biases and shear-dependent selection
- DES Y3 METACALIBRATION catalogue
 - Cuts: 10<S/N<1000, T/TPSF>0.5 + color cuts
 - 100,204,026 galaxies from Y3 GOLD in riz
 - $\sigma_e = 0.261$ with inverse-variance weights (S/N,T/T_{PSF})
 - $n_{\rm eff} = /5.59 \, {\rm gal/arcmin^2}$

Catalonus found to be very robust

From DES Y1 to Y3

From DES Y1 to Y3

DES Y3 redshift distributions with SOMPZ

**Everett+20* [DES Y3]

DES Y3 redshift distributions with SOMPZ

Bayesian mapping with self-organizing maps method (no template, no ML) from Buchs+19

RESULT: produces posterior samples of n(z) for each redshift bin

**Everett+20* [DES Y3]

DES Y3 redshift distributions with SOMPZ

3 sources of information

- 1. **SOMPZ** method calibrated with Balrog
- **Constraints from clustering** 2.
- 3. Shear-ratio
- ► DES Y3 n(z)'s
 - Effective combined $\langle z \rangle$ uncertainties between 0.008 and 0.015
 - Error dominated by
 - photo-calibration at low z
 - sample variance at higher z
- ► Marginalisation over n(z)'s with HYPERRANK Cordero+21 [DES Y3]
 - Posterior samples of n(z)'s instead of usual shift n'(z) = n(z+ Δz)
 - HYPERRANK ranks n(z)'s to allow marginalisation over both $\langle z \rangle$ and n(z) shape

Redshift

Myles+20 [DES Y3]

Joint calibration of shears and redshifts

Redshift distributions as shear response

 Consider n(z) as response of data ensemble to shear at redshift z

$$\langle \mathbf{e}_{obs} \rangle = \int n_{\gamma}(z) \gamma_{true}(z) \, \mathrm{d}z + \mathbf{c} + \mathrm{noise}$$

- Distorsion $n(z) \rightarrow n_{\gamma}(z)$ measured by sims
 - $n_{\gamma}(z)$ has norm 1+*m*
 - Very realistic simulations matching deep field colors and blending
- DES Y3 results
 - ▶ m~-2% dominated by blending
 - Distorted/calibrated SOMPZ $n_{\gamma}(z)$ samples to be used for cosmology

MacCrann+20 [DES Y3]

- Cosmic shear 101
- Dark Energy Survey Year 3 analysis
 - Advances in shear/redshift calibration
 - Cosmological constraints
 - Outstanding issues
- Cosmic shear with LSST: new problems

DES Y3 cosmic shear maps

- γ_1/γ_2 shear maps per redshift bin
- Auto- and cross two-point functions
 - Correlations functions $\xi_{\pm}(\theta)$: Amon+21 and Secco+21 [DES Y3]
 - Angular power spectra C_{ℓ} : Doux+22 [DES Y3]

Cosmic shear power spectra

Cyrille DOUX | LSST France | May 18th 2022

Cosmological constraints

DES Y3 cosmic shear power spectra vs Planck

DES Y3 power spectra vs two-point functions

► *S*₈=0.784±0.026 at 1.6σ from Planck

ΔS₈=0.002 from two-point function analysis (expected)

Internal consistency

- Consistency in *data* space
 - Posterior predictive distribution (PPD) method Doux+21 [DES Y3]

Jessie Muir | <u>#darkbites</u>

• Test goodness-of-fit and internal consistency : splitting data according to redshift, scales, etc

We found strong level of consistency between all data and the model

Reconstructing the power spectrum

- **IDEA** : *approximate* reconstruction by inverting $C_{\ell} = F[P(k)]$
- **RESULT** : *P*(*k*) found ~20% lower than Planck in 0.03 to1 *h*/Mpc

Gaussian vs non-Gaussian statistics

- Cosmic shear 101
- Dark Energy Survey Year 3 analysis
 - Advances in shear/redshift calibration
 - Cosmological constraints
 - Outstanding issues
- Cosmic shear with LSST: new problems

Impact of baryons

Impact of baryons

- Baryons redistribute matter
- Suppression of power up to 30%
 at k ~ 1 h/Mpc
- Broooaaaad variations across hydrodynamical simulations...
- DES Y3 fiducial approach
 - Discards these scales !

Baryons vs scale cuts

Baryons vs scale cuts

- Alternative approach
 - Model baryonic feedback with HMCode
 - ► A_{HM} parameter
 - Alternative scale cuts with *approximate* 3D Fourier mode cut k_{max}
 - k_{max} from 1 to 5 h^{-1} Mpc
 - ℓ_{max} from ~200 to ~1600
- DES Y3 results
 - HMCode shown to recover various models on simulations
 - Extra constraining power goes to baryonic feedback parameter !

Intrinsic alignments

- IA modelling
 - ► Tidal alignment (TA) $\propto A_{TA}$
 - Tidal torquing (TT) $\propto A_{TT}$
- DES Y3 results
 - Degeneracy partially broken by shear ratios
 - More complex model (TATT) not favored by data over simpler one (NLA)

Doux+22 [DES Y3]

- Cosmic shear 101
- Dark Energy Survey Year 3 analysis
 - Advances in shear/redshift calibration
 - Cosmological constraints
 - Outstanding issues
- Cosmic shear with LSST: new problems

A preview of Rubin data from HSC...

62% of galaxies blended (Sanchez+21)

Blending

Dawson+15

Why is it an issue?

- 62% galaxies are blended at LSST's depth
- Discarding them? Statistical power 1 and selection biases 1
- Impacts detection and shape/flux measurements, ie all weak lensing science!
- Why is it difficult?
 - Morphology of galaxies: Sérsic/de Vaucouleurs, bulge+disk profiles sufficient?
 - Strongly tied to detection algorithm, eg unrecognised blends (see Manon's talk)

Blending WG

Communication

- Conveners: James Buchanan and myself
- #desc-blending

Current approaches coordinated with DM

- SCARLET: multi-band deblender using constrained optimisation Melchior, Moolekamp++
- METADETECT: corrects shear-dependent detection Sheldon, Becker++
- Synthetic source injection (SSI): pipeline being integrated to DM stack Meyers++
- DESC projects
 - BLENDING TOOLKIT: simulation of blended images Mendoza, Biswas, Boucaud++
 - ► +++
- Cross WG discussions
 - #desc-blxpz : impact of blending on photometric redshift distributions
 - #desc-blxcl : impact of blending on cluster cosmology

Beyond two-point functions

- Higher-order statistics topical team
 - Modelling of HOS: peaks, voids, 1D PDF, topological features, etc.
 - Robustness to systematics

- Bayesian pipelines topical team
 - Cosmology to field to images forward-modelling
 - Requires fast simulations/sampling techniques (eg differentiable sims)

Take-away messages

- Many algorithmic developments from DES Y3
 - PSF, deep-fields, joint redshift and shear calibration, internal consistency
- Modelling uncertainties
 - Intrinsic alignments
 - Small-scale matter power spectrum
 - ► Non-linearities and <u>baryonic feedback</u>
 - More data > more stringent scale cuts > constraints ??
- Weak lensing with Rubin
 - Blending impact on detection/measurement
 - Capturing more information with higher-order statistics and Bayesian pipelines, if modelling available...

Thanks!