

Institut national de physique nucléaire et de physique des particules

Update on the new ZTF calibration pipeline

Benjamin Racine, with slides from many people May 17th 2022 **Rubin France meeting, Annecy**

Exotic form of Dark Energy | Stats & Precision

Cosmo | RIGAULT

Calibration Goals

• Goal #1

- Band intercalibration at 0.1%
- (Absolute scale unimportant)

• Goal #2

- Uniformity at 0.1% on focal plane
- Uniformity at a few 0.1% on full survey footprint
- **Deliverable:** g,r,I catalog anchored on CALSPEC/DICE

CALSPEC DICE

otprint LSPEC/DICE

StarFlats Ubercal

Adapted form N. Regnault

Calibration Goals

Goal #1

- Band intercalibration at 0.1%
- (Absolute scale unimportant) Ο
- Goal #2
 - Uniformity at 0.1% on focal plane Ο
 - Uniformity at a few 0.1% on full survey footprint Ο
 - **Deliverable:** g,r,I catalog anchored on CALSPEC/DICE Ο
- Goal #3
 - Anchor the SN light curves to this calibration at 0.1% Ο
 - We use the field stars as calibrators Ο
 - Need an estimator which can run (1) on the supernovae (2) Ο on the field stars

CALSPEC DICE

StarFlats Ubercal

Scene modeling

Adapted form N. Regnault

Feedback / iterations

Adapted form N. Regnault

Bias & Flat fielding Philippe Rosnet & Philippe Gris

Bias & Flat fielding

- Master-bias (20 days) stable at the level of 0.01 ADU
- Outlier < 0.6%
- Full study of 2019 on-going

Bias & Flat fielding

Master-flat processing

LED09 - January 2019

Master-flat processing

Conclusions of preliminary study of master-flat

- Flat-field stability better than 0.1% for every LEDs
- Better stability of flatfielding when performed at **CCD level** versus mosaic level

Next step

- Identification of period between interventions
- Processing master-bias and master-flat per period
- Test the new flat fielding procedure using starflats

LED09 - January 2019

Ubercal

Benjamin Racine, Fabrice Feinstein + Julian Bautista, Mickael Rigault, Bastien Carreres, Dominique Fouchez

Ubercal method

 $m_1 + ZP_1 = m_{11}^{obs}$ $m_1 + ZP_2 = m_{12}^{obs}$

Ubercal method

Fit for relative zero points & star magnitudes

$$m_1 + 0 = m_{11}^{obs}$$

 $m_1 + \Delta ZP_2 = m_{12}^{obs}$

Fit for relative zero points & star magnitudes

Ubercal method

 $m_1 + 0 = m_{11}^{obs}$ $m_2 + 0 = m_{21}^{obs}$ $m_3 + \Delta ZP_2 = m_{32}^{obs}$ $m_4 + \Delta ZP_2 = m_{42}^{obs}$ $m_1 + \Delta ZP_3 = m_{13}^{obs}$ $m_2 + \Delta ZP_3 = m_{23}^{obs}$ $m_3 + \Delta ZP_3 = m_{33}^{obs}$ $m_4 + \Delta ZP_3 = m_{43}^{obs}$

Fit for relative zero points & star magnitudes

6 month: 2019-03 to 2019-08

Starflats (aparté)

Estelle Robert, Nicolas Regnault

Adapted form E. Robert

We see large quadrant to quadrant gain variations

We see large quadrant to quadrant gain variations

We see large quadrant to quadrant gain variations

Starflat

- 0.15

-0.10

- 0.05

- 0.00

- -0.05

Gain subtracted

Back to ubercal

Fit for relative zero points & star magnitudes

6 month: 2019-03 to 2019-08

Gaia ID: 1384711028327579776

Fitted mag

ZTF-g

Median residuals

Leander Lacroix, Nicolas Regnault

Scene modeling

Galaxy profile

$I_{i,p} = \alpha_i P_i(x_p - \varphi_i(x_{\rm SN})) f_i + \alpha_i G_p(\varphi_i^{-1}(x_p)) \otimes K_i$

• Fit by Least Square

Scene modeling

 $V = \begin{pmatrix} f_1 & \dots & f_n & x_{SN,1} & x_{SN,2} & G_1 & \dots & G_N \end{pmatrix}$

ZTF19aamhhae

Host galaxy Close view 770 0 765 -3000 2 ნ<mark>ო</mark> 760 y [pixel] [bixel] ~ 755 4 -2000 <u>× 1</u> 6 -1000 8 -745 740 10 -5.0 7.5 10.0 1360 1370 1380 2.5 0.0 *x* [pixel] x [pixel] 0 815 3000 810 2 -₽ 805 y [pixel] 4 2000 xn H . [bixel] × 795 6 1000 8 790 0 10 -1390 5.0 1380 1400 2.5 7.5 10.0 0.0 *x* [pixel] x [pixel] 1200 0 825 1000 2 -820 800 [e] 600 y [pix Flu> [pixel 8 6 -400 805 8 -200 800 10 -0 2.5 5.0 7.5 10.0 1340 1350 1330 0.0

x [pixel]

N

>

x [pixel]

ZTF19aamhhae

ZTF19aalzmmt

ZTF19aanircs

ZTF19aamdmcs

Feedback / iterations