The ZTF Type Ia Supernovae volume limited sample

Madeleine GINOLIN - 17th May 2022

Hubble diagram **Standard correction**

DR2 sample

All results are preliminary

12

DR2 sample Volume limited sample

DR2 volume-limited sample

Sample	Size	
SNe classified as la	3793	
Good light curve	2975	
Redshift cut	972	
SALT fit probability	825	
Color cut (values and errors)	664	
Stretch cut (values and errors)	647	
Host redshift	332	

Hubble residuals **Environment properties**

Credits: B.J. Fulton/ LCOGT/Caltech

All results are preliminary

(Masses derived with the formula from Taylor et al. 2011) 6

Stretch distribution **Two population model**

	μ_1	σ_1	μ_2	σ_2	Ratio
This work	0.27 ± 0.06	0.68 ± 0.04	-1.69 ± 0.09	0.52 ± 0.06	0.722 ± 0.034
Fiducial sample from Nicolas et al 2021	0.37 ± 0.05	0.61 ± 0.04	-1.22 ± 0.16	0.56 ± 0.10	0.76 ± 0.05
Difference (in sigmas)	1.28	1.24	2.56	0.34	0.63

 $\Delta m = \beta c + \alpha x_1 + M$

Color-stretch distribution Data vs model

All results are preliminary

Color distribution Data

All results are preliminary

 $\Delta m = \beta c + \alpha x_1 + M$

Brout & Scolnic (2020)

Color distribution What is dust and what is intrinsic?

All results are preliminary

 $\Delta m = \beta c + \alpha x_1 + M$

Brout & Scolnic (2020)

\overline{C}	$\sigma_{_{C}}$	$ au_E$
084 ± 0.004	0.042 ± 0.002	0.17 ± 0.04
034 ± 0.009	0.070 ± 0.006	0.078 ± 0.009
5.0ළ	4.43	2.24

Hubble residuals Environmental dependance

\rightarrow Different (β, α, M) for the two populations

All results are preliminary

 $\Delta m = (\beta c + \alpha x_1 + M)$

Local color

Hubble residuals **Environmental dependance**

 $\Delta m = (\beta c + \alpha x_1 + M)$

Hubble residuals Step function

All results are preliminary

 $\Delta m = \beta c + \alpha x_1 + \beta c + \beta c + \alpha x_1 + \beta c + \beta c + \alpha x_1 + \beta c + \beta c + \alpha x_1 + \beta c +$

Hubble residuals **Step function**

All results are preliminary

$\Delta m = \beta c + \alpha x_1 + M$

Conclusion

