

LSST France, 17 May 2022

Emille Ishida, on behalf of the RESSPECT team

The goal of RESSPECT:

To build a **recommendation system** for the construction of an **optimal training sample** given available spectroscopic resources.

It is **NOT** the goal of RESSPECT:

- Build a better classifier
- Maximize the number of spectroscopically confirmed SN Ia
- Test a complete cosmology pipeline
- ...

The SN Ia photometric cosmology pipeline

Cosmology results from photometrically classified SN IA

Feature extraction

Requirement: Uniform matrix for both, partial as well as full light curves

Using Bazin,

Comparing Different Parameterisations

$$f(t) = A \frac{e^{-(t-t_0)/\tau_f}}{1 + e^{(t-t_0)/\tau_r}} + B,$$

Data includes forced photometry

Name	# Params	Comparative Score (/ 100)	Time Taken	Authors
Bazin	5	56 ± 2	30 ms	Bazin et. al. (2009)
ALERCE v1	6	50 ± 2	-2 3/ms	Sanchez-Saez et. al. (2020)
ALERCE v2	6	47 ± 2	78 ms	Sanchez-Saez et. al. (2020)
FRED	5	47 ± 2	45 ms	Peng et. al. (2010)

Optimized feature extraction routine by Siddharth Chaini and Johann Cohen-Tanugi Re-factorization and pipeline optimization by Rupesh Durgesh

Take into account observational caveats

- Window of Opportunity for Labelling
- Evolving Samples
 - We must make query decisions before we can observe the full LC
 - New observations are added for points already in the training sample
- Multiple Instruments
- Evolving Costs
 - Observing costs for a given object changes as it evolves.

Kennamer et al., 2020 - arXiv:astro-ph/2010.05941

+ Cosmological Feedback

By Alex Malz, Mi Dai and the RESSPECT team

Goals:

- Evaluate how the impact on cosmology varies with contaminant class
- Find a suitable metric to evaluate impact on cosmology (NOT cosmology result)

By Alex Malz, Mi Dai and the RESSPECT team

Fiducial corresponds to Avocado classification results

Next steps

- Posterior based metrics for RESSPECT loop
- Cosmology metric and the AL pipeline are now being integrated
- Track the evolution of metrics within active learning loops
- Implement a more flexible telescope time availability
- Metrics paper almost ready for resubmission
- Write the paper and documentation for the pipeline

Alex Malz <u>aimalz@astro.ruhr-uni-bochum.de</u>

Mi Dai: mi.dai@jhu.edu

Emille Ishida: emille.ishida@clermont.in2p3.fr

SALT2 fit

class	DDF	DDF %	WFD	WFD %
Ia	9621	85.6	999 789	91.3
II	1028	9.1	72319	6.6
Iax	362	3.2	8993	0.8
Ibc	196	1.7	11603	1.1
CART	19	0.2	1136	0.1
AGN	1	< 0.1	146	< 0.1
91bg	4	< 0.1	308	< 0.1
SLSN	4	< 0.1	503	< 0.01
TDE	1	< 0.1	_	_
PISN	_	_	9	< 0.1
ILOT	_	_	22	< 0.1
KN	1	1	1	< 0.1
Total	11 236	100	1 094 829	100

Table 1. The populations of light curves in each field that survive a SALT2 fit.

Malz et al. (the RESSPECT team), *Are classification metrics good proxies for SN la cosmological constraining power?*, under internal review

Machine Learning

Active Learning

External Factors

External Factors

Cosmological Feedback

Magnitude today needed for cost calculation

Included extrapolation Given Bazin Fit.

This is flux, We need mag

$$f(t) = A \frac{e^{-(t-t_0)/\tau_f}}{1 + e^{(t-t_0)/\tau_r}} + B,$$

Magnitude today needed for cost calculation

Extrapolation
In mag is now included
In the pipeline

So we get the estimated Mag today
Given the Bazin fit ...

Experiment design

Experiment design

