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The goal of RESSPECT:

It is NOT the goal of RESSPECT:

Build a better classifier
Maximize the number of spectroscopically confirmed SN Ia
Test a complete cosmology pipeline
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Before anything ...

Feature extraction

Requirement: Uniform matrix for both, partial as well as full light curves

Using Bazin,

e_(t_t())/‘rf

10 = A o, H B

Data includes forced
photometry

Comparing Different Parameterisations

Comparative

Name # Params Score (/100) Time Taken Authors

Bazin S 56 £ 2 30 ms Bazin et. al. (2009)
ALERCE v1 6 50 + 2 37 ms Sa”Che(Zz'OSzaOe)z et. al.
ALERCE v2 6 4742 78 ms Sa”Che(Zz'OSzaoe)z el gl

FRED S 47 £ 2 45 ms Peng et. al. (2010)

Optimized feature extraction routine by Siddharth Chaini and Johann Cohen-Tanugi
Re-factorization and pipeline optimization by Rupesh Durgesh




If only it was that simple

Take 1nto account observational caveats

e Window of Opportunity for Labelling
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e Evolving Samples f
o  We must make query decisions before we y 2001 é
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e Multiple Instruments s s

Days since first observation

e Evolving Costs

o  Observing costs for a given object
changes as it evolves.

Kennamer et al., 2020 - arXiv:astro-ph/2010.05941



https://arxiv.org/abs/2010.05941
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Are classification metrics good proxies
for SN la cosmological constraining power?

By Alex Malz, Mi Dai and the RESSPECT team

e (Goals:
o Evaluate how the impact on
cosmology varies with contaminant
class

o Find a suitable metric to evaluate
impact on cosmology
(NOT cosmology result)



Are classification metrics good proxies
for SN la cosmological constraining power?

By Alex Malz, Mi Dai and the RESSPECT team
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Are classification metrics good proxies
for SN la cosmological constraining power?

By Alex Malz, Mi Dai and the RESSPECT team
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Currently under internal review in DESC and COIN



Are classification metrics good proxies
for SN la cosmological constraining power?

By Alex Malz, Mi Dai and the RESSPECT team
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Are classification metrics good proxies
for SN la cosmological constraining power?

By Alex Malz, Mi Dai and the RESSPECT team
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Spin-off project

Are classification metrics good proxies
for SN la cosmological constraining power?

By Alex Malz, Mi Dai and the RESSPECT team
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Are classification metrics good proxies
for SN la cosmological constraining power?

By Alex Malz, Mi Dai and the RESSPECT team
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Next steps

e Posterior based metrics for RESSPECT loop

e Cosmology metric and the AL pipeline are now being integrated
e Track the evolution of metrics within active learning loops

e Implement a more flexible telescope time availability

e Metrics paper almost ready for resubmission

e \Write the paper and documentation for the pipeline

LSST DESC & COIN

Alex Malz aimalz@astro.ruhr-uni-bochum.de
RESSPECT

Mi Dai: mi.dai@jhu.edu
Emille Ishida: emille.ishida@clermont.in2p3.fr
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SALT?2 fit

class DDF | DDF % WED WED %
Ia 9621 85.6 999 789 91.3
I1 1028 9.1 72319 6.6
Jax 362 3.2 8993 0.8
Ibc 196 1.7 11603
CART 19 0.2 1136 0.1
AGN | < 0.1 146 < 0:1
91bg 4 < 01 308 < 0.1
SLSN 4 <0.1 503 < 0.01
TDE | ol | — —
PISN — — 9 201
ILOT - - 22 < 0.1
KN - - 1 < 0.1
Total | 11236 100 1 094 829 100

Table 1. The populations of light curves in each field that survive a

SALT?2 fit.

Malz et al. (the RESSPECT team), Are classification metrics good proxies for SN la cosmological

constraining power?, under internal review
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Active Learning
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External Factors
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Cosmological Feedback
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Magnitude today needed for cost calculation
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Magnitude today needed for cost calculation

mag

Extrapolation 55

In mag is now included %0
In the pipeline

So we get the estimated
Mag today

Given the Bazin fit ... “

25
26

27

mag

28

29

31

Filter: g

A Y
\
\
\
\.
N
.
| | b
\‘
|
10 20 0 20
days since first observation
Filter: i
|
| |
10 20 30 40

days since first observation

24.0 |

26.0 1

mag

24

26 1

28

30

32 1

Filter: r

0 10 20 30 20
days since first observation

Filter: z

0 10 20 0 40

days since first observation



Traditionally ...

Experiment design

.Q»

queried

This makes the test sample increasingly easier
To classify -- it is not a faire comparison to random
Sampling (passive learning)



Preparing for LSST production
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Preparing for LSST production
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