# Likelihoods for cluster count cosmology

Constantin Payerne, Calum Murray, Céline Combet. Laboratoire de Physique Subatomique et de Cosmologie, Grenoble

Rubin LSST France meeting, 05/2022

### Are the largest gravitationally bound objects in the Universe

- Form within the largest dark matter halos
- $\bullet M > 10^{14} M_{\odot}$
- size of  $\approx 1 \; \mathrm{Mpc}$
- Recently formed objects, redshift  $z \le 2$ : Final step of hierarchical large scale structure formation



Numerical simulations Credits: Klaus Dolag



The evolution of mass and redshift distribution of halos is sensitive to cosmology

#### Basic recipe for cluster abundance cosmology (ideal case)

- From a galaxy cluster survey with known redshifts, masses
- Count the number of galaxy clusters in bins of redshift and mass

$$N(\theta) = \Omega_s \int_{z_1}^{z_2} dz \frac{d^2 V(z)}{dz d\Omega} \int_{M_1}^{M_2} dM \frac{dn(M, z)}{dM}$$
  
Differential comoving volume (cosmology) Halo mass function ( $\Omega_m, \sigma_8$ )

Comparing the observed abundance  $\widehat{N}$  to the prediction N = know the statistical properties of cluster count



# Statistical properties of cluster abundance



#### Cluster abundance as a Poisson variable ?

Counting experiment

- discrete
- un-correlated
- $\rightarrow \widehat{N} \sim \mathcal{P}(\mu = N)$
- $\bullet$  Poisson shot noise  $\sigma^2(\,\widehat{N}\,)=N$



### Statistical properties of cluster abundance



#### Cluster abundance as a Poisson variable ?

Counting experiment

- discrete
- un-correlated
- $\rightarrow \widehat{N} \sim \mathcal{P}(\mu = N)$
- Poisson shot noise  $\sigma^2(\widehat{N}) = N$

#### The local halo density has spatial fluctuations

- $\bullet\,\delta n_h(\overrightarrow{x}) = b\,\delta_{\rm m}(\overrightarrow{x})$
- Cluster count follows matter density field



### Statistical properties of cluster abundance



#### Cluster abundance as a Poisson variable ?

Counting experiment

- discrete
- un-correlated
- $\rightarrow \widehat{N} \sim \mathscr{P}(\mu = N)$
- Poisson shot noise  $\sigma^2(\widehat{N}) = N$

#### The local halo density has spatial fluctuations

- $\bullet\,\delta n_h(\overrightarrow{x}) = b\,\delta_{\rm m}(\overrightarrow{x})$
- Cluster count follows matter density field

#### Additional variance to cluster abundance shot noise

$$\sigma^2(\widehat{N}) = N + \sigma_{\text{sample}}^2$$

- $P_{\rm mm}(k)$ : matter power spectrum
- Survey geometry (redshift binning, sky area)
- Mass binning

 $\rightarrow \sigma_{\rm sample}^2$  increases with the number of halos N per mass-z bins







Variance computed with

- PySSC (Lacasa et al. 2021)
- CCL (Chisari et al. 2018)





Variance computed with

• PySSC (Lacasa et al. 2021)

• CCL (Chisari et al. 2018)



estimate posteriors  $p(\overrightarrow{\theta} \mid \widehat{N}) = \pi(\overrightarrow{\theta}) \mathscr{L}(\widehat{N} \mid \overrightarrow{\theta})$ 

|            | Poissonian                                                                                       |
|------------|--------------------------------------------------------------------------------------------------|
| Likelihood | $\frac{N(\overrightarrow{\theta})^{\widehat{N}} e^{-N(\overrightarrow{\theta})}}{\widehat{N} !}$ |
| Condition  | $N \gg \sigma_{\text{sample}}^2(N)$                                                              |
| Pros       | Discrete<br>Unbinned framework                                                                   |
| Cons       | No sample<br>variance                                                                            |





estimate posteriors  $p(\overrightarrow{\theta} \mid \widehat{N}) = \pi(\overrightarrow{\theta}) \mathscr{L}(\widehat{N} \mid \overrightarrow{\theta})$ 

|            |                                                                                                     |                                                                                                                                                            | 800-   | — Poisson shot noise |
|------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|
|            | Poissonian                                                                                          | Gaussian                                                                                                                                                   | 700-   | • full variance      |
|            | 1 01330111011                                                                                       | Guussian                                                                                                                                                   | 600-   | Ga                   |
| Likelihood | $\frac{N(\overrightarrow{\theta})^{\widehat{N}} e^{-N(\overrightarrow{\theta})}}{\widehat{\infty}}$ | $\propto e^{-\frac{1}{2}[\overrightarrow{\widehat{N}-N(\overrightarrow{\theta})}]^T \Sigma^{-1}[\overrightarrow{\widehat{N}-N(\overrightarrow{\theta})}]}$ | 500-   |                      |
| Condition  | $\frac{N!}{N \gg \sigma^2}$                                                                         | 2 (11)                                                                                                                                                     | ъ 400- |                      |
|            | $N \gg O_{\text{sample}}(N)$                                                                        | $N \sim \sigma_{\rm sample}^2(N)$                                                                                                                          | 300-   |                      |
| Pros       | Discrete<br>Unbinned framework                                                                      | Sample variance                                                                                                                                            | 200-   | . csonian            |
| Cons       | No sample                                                                                           | No discrete sampling                                                                                                                                       | 100-   | POIS                 |
|            | variance                                                                                            | No unbinned framework                                                                                                                                      | 0 -    |                      |
|            |                                                                                                     |                                                                                                                                                            | I      | 0 200 400 600        |

*N*<sub>cluster</sub>/M-z bins

estimate posteriors  $p(\overrightarrow{\theta} \mid \widehat{N}) = \pi(\overrightarrow{\theta}) \mathscr{L}(\widehat{N} \mid \overrightarrow{\theta})$ 

|            | Poissonian                                                                                       | Gaussian                                                                                                                                                   |
|------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                  |                                                                                                                                                            |
| Likelihood | $\frac{N(\overrightarrow{\theta})^{\widehat{N}} e^{-N(\overrightarrow{\theta})}}{\widehat{N} !}$ | $\propto e^{-\frac{1}{2}[\overrightarrow{\widehat{N}-N(\overrightarrow{\theta})}]^T \Sigma^{-1}[\overrightarrow{\widehat{N}-N(\overrightarrow{\theta})}]}$ |
| Condition  | $N \gg \sigma_{\text{sample}}^2(N)$                                                              | $N \sim \sigma_{\text{sample}}^2(N)$                                                                                                                       |
| Pros       | Discrete<br>Unbinned framework                                                                   | Sample variance                                                                                                                                            |
| Cons       | No sample<br>variance                                                                            | No discrete sampling<br>No unbinned framework                                                                                                              |

Multivariate Poisson-Gaussian (Hu & Kravtsov 2003)

$$\mathcal{L}(\widehat{N} \mid \overrightarrow{\theta}) \propto \int d \overrightarrow{x} \ \mathcal{G}[\overrightarrow{x} \mid \overrightarrow{N}(\theta)] \times \prod_{k=1}^{n} \mathcal{P}[\widehat{N}_{k} \mid x_{k}]$$

Gaussian matter density field Poisson sampling





estimate posteriors  $p(\overrightarrow{\theta} \mid \widehat{N}) = \pi(\overrightarrow{\theta}) \mathscr{L}(\widehat{N} \mid \overrightarrow{\theta})$ 



Multivariate Poisson-Gaussian (Hu & Kravtsov 2003)

**IPS** 

Gaussian matter density field Poisson sampling

Upcoming Rubin LSST  $\sim 10^5$  clusters

Contribution of sample variance will be important for future cosmological analysis

Choose MPG to use all possible cosmological information

- Poisson sampling
- Sample variance

### Upcoming Rubin LSST $\sim 10^5$ clusters

Contribution of sample variance will be important for future cosmological analysis

Choose MPG to use all possible cosmological information

- Poisson sampling
- Sample variance
- Are constraints stronger with MPG instead of Gaussian/Poissonian?
- Is there an optimal binning?
- Given a likelihood, are the errors correct? (are the likelihoods accurate?)

We present a framework to quantify accuracies of Poisson and Gaussian likelihoods relative to MPG



Standard cosmological analysis: posterior  $p(\vec{\theta} \mid \widehat{N}) = \pi(\vec{\theta}) \mathscr{L}(\widehat{N} \mid \vec{\theta})$ 

- Posterior variance must provide wide enough confidence region
- comparable to the spread of best fits obtained from multiple realisations of the data
- Criteria to choose a likelihood instead of another



Standard cosmological analysis: posterior  $p(\vec{\theta} \mid \widehat{N}) = \pi(\vec{\theta}) \mathscr{L}(\widehat{N} \mid \vec{\theta})$ 

- Posterior variance must provide wide enough confidence region
- comparable to the spread of best fits obtained from multiple realisations of the data
- Criteria to choose a likelihood instead of another

#### Dataset

1000 simulated dark matter halo catalogs (Euclid collaboration)

- PINOCCHIO algorithm (Monaco et al., 2013)
- Planck cosmology
- Masses calibrated on known halo mass function
- Euclid-like sky area  $\sim \frac{1}{4}$  of full-sky
- 10<sup>5</sup> halos/simulation
- $M > 10^{14} M_{\odot}$

### Method

• For each simulation, posterior of ( $\mathbf{\Omega}_{\mathrm{m}}$  , $\sigma_{\mathrm{8}}$ )





### Method

LPS(

- For each simulation, posterior of ( $\mathbf{\Omega}_{\mathrm{m}}$  , $\sigma_{\mathrm{8}}$ )
- x1000 times over the 1000 simulations
- Look at the distribution of best fits



Un-filled: Posterior distributions contours for ( $\Omega_m$ , $\sigma_8$ ) Filled: Histogram of the 1000 ( $\Omega_m$ , $\sigma_8$ ) individual means

### Method

- For each simulation, posterior of ( $\mathbf{\Omega}_{\mathrm{m}}$  , $\sigma_{\mathrm{8}}$ )
- x1000 times over the 1000 simulations
- Look at the distribution of best fits

### Different error definitions

- Individual errors  $\sigma(\Omega_{\mathrm{m}})_i, \sigma(\sigma_8)_i$ 
  - Obtained on each simulation
  - Depends on input likelihood



Un-filled: Posterior distributions contours for  $(\Omega_m, \sigma_8)$ Filled: Histogram of the 1000  $(\Omega_m, \sigma_8)$  individual means



### Method

- For each simulation, posterior of ( $\mathbf{\Omega}_{\mathrm{m}}$  , $\sigma_{\mathrm{8}}$ )
- x1000 times over the 1000 simulations
- Look at the distribution of best fits

### Different error definitions

- Individual errors  $\sigma(\Omega_{\mathrm{m}})_i, \sigma(\sigma_8)_i$ 
  - Obtained on each simulation
  - Depends on input likelihood
- Standard deviation of 1000 best fits
  - depends on underlying true likelihood
  - Accessed with means over the 1000 simulations
- Compare individual errors to the spread of best fits
- Test if a given likelihood gives robust constraints



Un-filled: Posterior distributions contours for  $(\Omega_m, \sigma_8)$ Filled: Histogram of the 1000  $(\Omega_m, \sigma_8)$  individual means



## Strategy

### Set up

- Redshift 0.2 < z < 1.2
- Mass  $14.2 < \log_{10}(M) < 15.6$
- 3 different binning set-ups for each of 3 likelihoods:

|    | Redshift bins | Mass bins | # of bins | Average # cluster/bin |
|----|---------------|-----------|-----------|-----------------------|
| #1 | 4             | 4         | 16        | 5000                  |
| #2 | 20            | 30        | 600       | 150                   |
| #3 | 100           | 100       | 10 000    | 10                    |

=> browse a variety of regimes from shot noise to sample variance



### Strategy

### Set up

- Redshift 0.2 < z < 1.2
- Mass  $14.2 < \log_{10}(M) < 15.6$
- 3 different binning set-ups for each of 3 likelihoods:

|    | Redshift bins | Mass bins | # of bins | Average # cluster/bin |
|----|---------------|-----------|-----------|-----------------------|
| #1 | 4             | 4         | 16        | 5000                  |
| #2 | 20            | 30        | 600       | 150                   |
| #3 | 100           | 100       | 10 000    | 10                    |

=> browse a variety of regimes from shot noise to sample variance

#### Methodology

For each likelihood (Poisson, Gaussian, MPG) (x3)

- 1.  $(\Omega_m, \sigma_8)$  posteriors for each simulation (x1000)
- 2. For 3 binning set-ups (x3)

 $\rightarrow$  9 000 cosmological constraints !

standard choice is MCMC, it's too slow
we used Importance Sampling



### Importance sampling

Used to estimate properties of p (posterior) from a known distribution q (proposal)

### Method





### Importance sampling

Used to estimate properties of p (posterior) from a known distribution q (proposal)

### Method



#### Requirement

• Make appropriate choice of q to "contain" the posterior p

#### Advantages

- Model pre-computed (long to compute)
- Only limited by likelihood computation time  $\mathscr{L}[\widehat{N} \mid N(\theta)]$



# 9 000 cosmological constraints

Posteriors on  $(\Omega_m, \sigma_8)$ 





IPS(

### Results: (4 redshift bins)x(4 mass bins) case

#### distribution of 1000 means

- Binning setup #1
- Scatter around input cosmology
- Validate the modelling input
- No significant bias on the cosmology











• Individual errors decrease

#### Error comparison

- Poisson individual errors are always underestimated
- Gaussian captures the MPG behaviour
- Increase the number of bins improves constraints (10%)
- ullet Gaussian likelihood is still valid up to  $10^4$  bins



- We tested the accuracy of likelihoods on cluster abundance with simulations
  - Posterior variance vs spread of best fits
- For wide survey with  $f_{\rm sky} = 1/4$ 
  - Poisson likelihood underestimates errors compared to true error
  - the Gaussian likelihood describes MPG correctly
  - Errors decrease by 10% by increasing the number of bins (16 to  $10^4$  bins)
- Paper in prep.

### Perspectives

- Switch to unbinned likelihood
  - DESC project on unbinned likelihood with sample variance (M. Penna-Lima)



### Framework for testing likelihood



 $f_{\rm sky} = 1/40$ 



### Fisher forecast





Constantin Payerne, Likelihoods for cluster count cosmology

Covariance

Grepeble



### Halo mass function

Grepoble

$$N(\theta) = \Omega_s \int_{z_1}^{z_2} dz \frac{d^2 V(z)}{dz d\Omega} \int_{M_1}^{M_2} dM \frac{dn(M, z)}{dM}$$

Differential comoving volume (cosmology)

Halo mass function  $(\Omega_{\rm m}, \sigma_8)$ 



