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NASA, ESA, HST

Are the largest gravitationally bound objects in the Universe  

• Form within the largest dark matter halos 

•   
•  size of  Mpc 
• Recently formed objects, redshift : Final step of 

hierarchical large scale structure formation

M > 1014 M⊙

≈ 1
z ≤ 2

Galaxy clusters

Numerical simulations Credits: Klaus Dolag
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Cosmology with galaxy clusters

The evolution of mass and redshift distribution of halos is sensitive to cosmology

Basic recipe for cluster abundance cosmology (ideal case) 

• From a galaxy cluster survey with known redshifts, masses 
• Count the number of galaxy clusters in bins of redshift and mass

Differential comoving 
volume (cosmology)

Halo mass function (Ωm, σ8)

N(θ) = Ωs ∫
z2

z1

dz
d2V(z)
dzdΩ ∫

M2

M1

dM
dn(M, z)

dM

Comparing the observed abundance  to the prediction  = know the statistical properties of cluster count̂N N
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Statistical properties of cluster abundance

Cluster abundance as a Poisson variable ? 

Counting experiment 

• discrete 
• un-correlated 
•   
• Poisson shot noise 

→ ̂N ∼ 𝒫(μ = N )
σ2( ̂N ) = N
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Cluster abundance as a Poisson variable ? 

Counting experiment 

• discrete 
• un-correlated 
•   
• Poisson shot noise 

→ ̂N ∼ 𝒫(μ = N )
σ2( ̂N ) = N

The local halo density has spatial fluctuations 

•  
•  Cluster count follows matter density field

δnh( ⃗x ) = bδm( ⃗x )
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Statistical properties of cluster abundance

Cluster abundance as a Poisson variable ? 

Counting experiment 

• discrete 
• un-correlated 
•   
• Poisson shot noise 

→ ̂N ∼ 𝒫(μ = N )
σ2( ̂N ) = N

The local halo density has spatial fluctuations 

•  
•  Cluster count follows matter density field

δnh( ⃗x ) = bδm( ⃗x )

Additional variance to cluster abundance shot noise 

 

• : matter power spectrum 
• Survey geometry (redshift binning, sky area) 
• Mass binning 

  increases with the number of halos  per mass-z bins

σ2( ̂N ) = N + σ2
sample

Pmm(k)

→ σ2
sample N
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Covariance matrix for cluster count

σ2( ̂N ) = N + σ2
sample(N )

Variance computed with  
• PySSC (Lacasa et al. 2021) 
• CCL (Chisari et al. 2018)
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Covariance matrix for cluster count

σ2( ̂N ) = N + σ2
sample(N )

Variance computed with  
• PySSC (Lacasa et al. 2021) 
• CCL (Chisari et al. 2018)

+ correlation
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Poissonian Gaussian

Likelihood 

Condition

Pros Discrete 
Unbinned framework 

Sample variance

Cons No sample 
variance

No discrete sampling 
No unbinned framework

6

Cosmological constraints: which likelihood to use ?

∝ e− 1
2 [ ̂N − N( ⃗θ )]T Σ−1[ ̂N − N( ⃗θ )]

N( ⃗θ ) ̂N e−N( ⃗θ )

̂N !

N ≫ σ2
sample(N ) N ∼ σ2

sample(N )

estimate posteriors p( ⃗θ | ̂N ) = π( ⃗θ )ℒ( ̂N | ⃗θ )

Poiss
onian
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Poissonian Gaussian

Likelihood 
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Pros Discrete 
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Sample variance
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variance

No discrete sampling 
No unbinned framework
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Cosmological constraints: which likelihood to use ?

∝ e− 1
2 [ ̂N − N( ⃗θ )]T Σ−1[ ̂N − N( ⃗θ )]

N( ⃗θ ) ̂N e−N( ⃗θ )

̂N !

N ≫ σ2
sample(N ) N ∼ σ2

sample(N )

estimate posteriors p( ⃗θ | ̂N ) = π( ⃗θ )ℒ( ̂N | ⃗θ )

ℒ( ̂N | ⃗θ ) ∝ ∫ d ⃗x 𝒢[ ⃗x | ⃗N (θ)] ×
n

∏
k=1

𝒫[ ̂N k |xk]

Multivariate Poisson-Gaussian (Hu & Kravtsov 2003)

MPG

Gaussian matter density field Poisson sampling

Gau
ssi

an

Poiss
onian
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Poissonian Gaussian

Likelihood 

Condition

Pros Discrete 
Unbinned framework 

Sample variance

Cons No sample 
variance

No discrete sampling 
No unbinned framework

6

Cosmological constraints: which likelihood to use ?

∝ e− 1
2 [ ̂N − N( ⃗θ )]T Σ−1[ ̂N − N( ⃗θ )]

N( ⃗θ ) ̂N e−N( ⃗θ )

̂N !

N ≫ σ2
sample(N ) N ∼ σ2

sample(N )

estimate posteriors p( ⃗θ | ̂N ) = π( ⃗θ )ℒ( ̂N | ⃗θ )

ℒ( ̂N | ⃗θ ) ∝ ∫ d ⃗x 𝒢[ ⃗x | ⃗N (θ)] ×
n

∏
k=1

𝒫[ ̂N k |xk]

Multivariate Poisson-Gaussian (Hu & Kravtsov 2003)

MPG

Gaussian matter density field Poisson sampling

Gaussian: N ∼ σ2
sample

Poissonian: N ≫ σ2
sample

Gau
ssi

an

Poiss
onian
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Upcoming Rubin LSST  clusters∼ 105

Contribution of sample variance will be important for future cosmological analysis 

Choose MPG to use all possible cosmological information 

• Poisson sampling 
• Sample variance

Framework for testing the accuracy of likelihoods
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Upcoming Rubin LSST  clusters∼ 105

Contribution of sample variance will be important for future cosmological analysis 

Choose MPG to use all possible cosmological information 

• Poisson sampling 
• Sample variance

We present a framework to quantify accuracies of Poisson and Gaussian likelihoods relative to MPG

• Are constraints stronger with MPG instead of Gaussian/Poissonian?  
• Is there an optimal binning? 
• Given a likelihood, are the errors correct? (are the likelihoods accurate?)

Framework for testing the accuracy of likelihoods
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Standard cosmological analysis: posterior  

• Posterior variance must provide wide enough confidence region 
• comparable to the spread of best fits obtained from multiple realisations of the data 
• Criteria to choose a likelihood instead of another

p( ⃗θ | ̂N ) = π( ⃗θ )ℒ( ̂N | ⃗θ )

Framework for testing the accuracy of likelihoods
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Dataset 
  

1000 simulated dark matter halo catalogs (Euclid collaboration) 

• PINOCCHIO algorithm (Monaco et al., 2013) 
• Planck cosmology  
• Masses calibrated on known halo mass function 
• Euclid-like sky area  ¼ of full-sky 
• 105 halos/simulation 
•

∼

M > 1014 M⊙

Standard cosmological analysis: posterior  

• Posterior variance must provide wide enough confidence region 
• comparable to the spread of best fits obtained from multiple realisations of the data 
• Criteria to choose a likelihood instead of another

p( ⃗θ | ̂N ) = π( ⃗θ )ℒ( ̂N | ⃗θ )

Framework for testing the accuracy of likelihoods
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Method 

• For each simulation, posterior of (𝝮m ,𝝈8)

Un-filled: Posterior distributions contours for (𝝮m ,𝝈8)  

Framework for testing the accuracy of likelihoods
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Method 

• For each simulation, posterior of (𝝮m ,𝝈8)

Un-filled: Posterior distributions contours for (𝝮m ,𝝈8)  
Filled: Histogram of the 1000 (𝝮m ,𝝈8) individual means

Framework for testing the accuracy of likelihoods

• x1000 times over the 1000 simulations 
• Look at the distribution of best fits
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Method 

• For each simulation, posterior of (𝝮m ,𝝈8)

Un-filled: Posterior distributions contours for (𝝮m ,𝝈8)  
Filled: Histogram of the 1000 (𝝮m ,𝝈8) individual means

Framework for testing the accuracy of likelihoods

 Different error definitions 

• Individual errors  

• Obtained on each simulation 
• Depends on input likelihood

σ(Ωm)i, σ(σ8)i

• x1000 times over the 1000 simulations 
• Look at the distribution of best fits
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Method 

• For each simulation, posterior of (𝝮m ,𝝈8)

Un-filled: Posterior distributions contours for (𝝮m ,𝝈8)  
Filled: Histogram of the 1000 (𝝮m ,𝝈8) individual means

Framework for testing the accuracy of likelihoods

 Different error definitions 

• Individual errors  

• Obtained on each simulation 
• Depends on input likelihood

σ(Ωm)i, σ(σ8)i

• Standard deviation of 1000 best fits 

• depends on underlying true likelihood 
• Accessed with means over the 1000 simulations

• Compare individual errors to the spread of best fits 
• Test if a given likelihood gives robust constraints

• x1000 times over the 1000 simulations 
• Look at the distribution of best fits
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Redshift bins Mass bins # of bins Average # cluster/bin

#1 4 4 16 5000

#2 20 30 600 150

#3 100 100 10 000 10

Strategy

Set up 
• Redshift  
• Mass  
• 3 different binning set-ups for each of 3 likelihoods:

0.2 < z < 1.2
14.2 < log10(M ) < 15.6

=> browse a variety of regimes from 
shot noise to sample variance 
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Redshift bins Mass bins # of bins Average # cluster/bin

#1 4 4 16 5000

#2 20 30 600 150

#3 100 100 10 000 10

Strategy

Set up 
• Redshift  
• Mass  
• 3 different binning set-ups for each of 3 likelihoods:

0.2 < z < 1.2
14.2 < log10(M ) < 15.6

Methodology 
For each likelihood (Poisson, Gaussian, MPG) (x3) 

1.  posteriors for each simulation (x1000) 
2. For 3 binning set-ups (x3) 

 9 000 cosmological constraints !

(Ωm, σ8)

→

=> browse a variety of regimes from 
shot noise to sample variance 

: standard choice is MCMC, it’s too slow 
-> we used Importance Sampling
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Importance sampling

Used to estimate properties of  (posterior) from a known distribution  (proposal) 

Method 

•  is known, and fast to evaluate 
• Draw random -sample  

• Compute individual weights  

Outputs 

• Moments of  are given  

• Posterior  are weighted histograms 

Requirement 

• Make appropriate choice of  to “contain” the posterior  

Advantages 

• Model pre-computed (long to compute) 
• Only limited by likelihood computation time 

p q

q
q {Xi} ∼ q

wi =
p(Xi)
q(Xi)

p E(Xn)p =
1
Nq

Nq

∑
i=1

wi xn
i

p

q p

ℒ[ ̂N | N(θ)]
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9 000 cosmological constraints

Timescales with Importance Sampling 

•  1 sec to 1 min per posterior Poissonian, 
Gaussian 

•  1 to 15 h for MPG 

 repeatability in reasonable timescales*

∼

∼

→

X ∼ q

*multitasks jobs @ CC-IN2P3

Blue points: sample (importance sampling) 
Coloured 2  contours: posterior distributions of 
4 simulations

σ

Posteriors on (Ωm, σ8)
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Results: (4 redshift bins)x(4 mass bins) case

distribution of 1000 means  

• Binning setup #1 
• Scatter around input cosmology 
• Validate the modelling input 
• No significant bias on the cosmology
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• Individual Poisson errors are underestimated compared to std(1000 means) 
• Gaussian & MPG individual errors are slightly underestimated 
• Gaussian approximates MPG correctly

Results: (4 redshift bins)x(4 mass bins) case
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• Individual errors decrease 

Error comparison 

• Poisson individual errors are always 
underestimated 

• Gaussian captures the MPG behaviour

Results: Impact of the binning scheme

• Increase the number of bins improves 
constraints (10%) 

• Gaussian likelihood is still valid up to  bins104
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Conclusions

• We tested the accuracy of likelihoods on cluster abundance with simulations  
• Posterior variance vs spread of best fits 

• For wide survey with  
• Poisson likelihood underestimates errors compared to true error 
• the Gaussian likelihood describes MPG correctly 
• Errors decrease by 10% by increasing the number of bins (16 to  bins) 

• Paper in prep. 

Perspectives 

• Switch to unbinned likelihood 
• DESC project on unbinned likelihood with sample variance (M. Penna-Lima)

fsky = 1/4

104
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Framework for testing likelihood

Low abundance bin ⟨N ⟩ ≈ 2 High abundance bin ⟨N ⟩ ≈ 2500

MPG MPG
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Reduced volume sample

fsky = 1/40
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Fisher forecast
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Covariance

R =
Sample covariance

Shot noise

Cov(Nα1
, Nα2

) = Nα1
δα1,α2

K + ⟨bNα1
⟩⟨bNα1

⟩Sα1α2



/16Constantin Payerne, Likelihoods for cluster count cosmology 21

Halo mass function

D
iff
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Differential comoving 
volume (cosmology)

Halo mass function (Ωm, σ8)

N(θ) = Ωs ∫
z2

z1

dz
d2V(z)
dzdΩ ∫

M2

M1

dM
dn(M, z)

dM

Halo mass function

CCL (Chisari et al.)


