## A walk through cosmological simulations and their evolution

LSST-FRANCE Meeting – May 18th, 2022 – LAPP, Annecy

Vincent Reverdy









| 1. Introduction     | 2. Overview | 3. Process | 4. Clustering | 5. Lensing | 6. Conclusion |
|---------------------|-------------|------------|---------------|------------|---------------|
| A practical summary |             |            |               |            |               |

What this talk is about

What you need to know about cosmological simulations in practice.

## What this talk is NOT about

A theoretical, rigorous, exhaustive presentation on cosmological simulations.

#### Take-home messages

- Cosmological simulations are **not perfect**
- Full of subtelties, technical details, **numerical approximations** that can impact results
- The more you know about a simulation, the better the **interpretation** will be
- In some cases, machine learning algorithms can reverse-engineer semi-analytical models
- In some cases, machine learning algorithms can learn numerical effects



**3. Process** 

4. Clustering

5. Lensing

6. Conclusion

## The biggest lie of cosmological simulations

What is NOT done in cosmological simulations

Cosmological simulations are NOT solving general relativity

#### What is done in cosmological simulation

- Solve newtonian gravity in a homogeneous expanding background
- Expansion is pre-computed (FLRW solver)
- Instantaneous propagation of gravity
- ⇒ see debates on the Backreaction Conjecture





Matter density dynamics

LSST-FRANCE – May 18th, 2022 – Annecy





#### PP: Particle-Particle

- $\mathcal{O}(N^2)$
- Short distance: Particle-Particle
- Long distance: Particle-Particle

### PM: Particle-Mesh

- $0(N \log N)$
- Short distance: Particle-Mesh
- Long distance: Particle-Mesh

#### P<sup>3</sup>M: Particle-Particle Particle-Mesh

- $0(N\log N)/\mathcal{O}(N)$
- Short distance: Particle-Particle
- Long distance: Particle-Mesh



Simulation box



Periodic boundary conditions

Coordinate system to take expansion into account

| 1. Introduction | 2. Overview | 3. Process | 4. Clustering | 5. Lensing | 6. Conclusion |
|-----------------|-------------|------------|---------------|------------|---------------|
|                 |             |            |               |            |               |
|                 |             |            |               |            |               |
|                 |             |            |               |            |               |
|                 |             |            |               |            |               |
|                 |             |            |               |            |               |







Initial density distribution

Matter particles

Cubic mesh: Regular or Adaptive Mesh Refinement

5. Lensing 1. Introduction 2. Overview **3. Process** 4. Clustering 6. Conclusion Core of the iterative process for each particle ( î P Restart at 1) with uploaded position  $\overline{x}$  and speed 1) For each cell c containing particles with position  $\vec{x_i}$  and velocity  $\vec{v_i}$ • 2) Interpolate density  $\rho$  in cell c depending on surrounding particles **3**) From  $\rho$  compute the gravitational potential  $\Phi$ • 4) From  $\Phi$  interpolate back the acceleration  $\vec{a}$  at position  $\vec{x_i}$  $\overline{a_i}$ . . . . . . **5**) From  $\vec{a}$  compute the new speed  $\vec{v}_i$  of each particle v:

• 6) From  $\vec{v_i}$  compute the new position  $\vec{x_i}$  of each particle

 $\widehat{}$ 

1. Introduction2. Overview3. Process4. Clustering5. Lensing6. ConclusionAnd that's how large scale cosmic structure formation is simulated





Initial conditions of the simulation (~homogeneous)

Gravitational collapse and structure formation

LSST-FRANCE – May 18<sup>th</sup>, 2022 – Annecy

11





3. Process

4. Clustering

6. Conclusion

# Interpolation schemes: NGP, CIC, TSC...



LSST-FRANCE – May 18<sup>th</sup>, 2022 – Annecy

4. Clustering

5. Lensing

## Properties of pure dark matter simulations



#### Main parameters

- Initial positions and speed of particles
- Cosmological model
- Box size
- Number of particles
- Resolution in mass (particle mass)
- Resolution in size (minimum cell size)
- Resolution in time (time step)

#### Solver parameters (examples)

- Algorithm
- Discretization strategy
- Refinement strategy
- Floating-point precision
- Interpolation scheme
- Parallelization strategy





### Populating haloes with galaxies

- Semi-analytical models
- E.g.: Halo Occupation Distribution (HOD)

### The following operations may NOT commute

- Cluster detection
- Populating with galaxies

### Metaparameters dependency

May depend on non-physical metaparameters

### There is no "TRUE" clusters in simulations

- Depend on cluster detection algorithms
- Depend on models to populate with galaxies

1. Introduction2. Overview3. Process4. Clustering5. Lensing6. ConclusionAlternative approach: hydrodynamics simulations



LSST-FRANCE – May 18<sup>th</sup>, 2022 – Annecy

Vincent Reverdy – Cosmological Simulations

1.5

0.45

 $W(|\mathbf{r}_i - \mathbf{r}_j|, h)$ 

4. Clustering

## Hydrodynamical cosmological simulations



#### Principle

Simulate baryons on top of dark matter

#### Pros

- No need of semi-analytical populating algorithms
- Remove associated metaparameters

#### Cons

Gastrophysics (lots of metaparameters)Subgrid semi-analytical models

### Subgrid models

Subgrid models are (generally) BAD

**3. Process** 

4. Clustering

6. Conclusion

## Simulation coordinates



space





LSST-FRANCE – May 18<sup>th</sup>, 2022 – Annecy

#### Two types of effects

Physics effects

Numerical effects (~ biases and systematics of experiments)

### Example of machine-learning epic failures

- Learning from the encoding of floating-point numbers
- Learning the inverse of a semi-analytical models
- Learning preferred directions on cartesian grids

#### General rules

• The higher the number of metaparameters, the harder it is to distinguish the numerical and physics effects

- The higher the number of post-processing phases, the harder it is to correctly interpret the results
- Always keep in mind that an algorithm may be measuring the result of a numerical effect
- Black box simulations + black box post-processing algorithms ≈ black box results

| 1. Introduction   | 2. Overview | 3. Process | 4. Clustering | 5. Lensing | 6. Conclusion |
|-------------------|-------------|------------|---------------|------------|---------------|
| Conclusions and a | questions   |            |               |            |               |

Simulations are numerical experiments

As for every experiments there are biases and systematics

### **General Relativity**

■ Not fully relativistic ⇒ Newtonian gravity in a precomputed FLRW expansion

### Non-linear regime

Powerful tool to study the non-linear collapse of matter

#### Take-home messages

- Cosmological simulations are not perfect
- Full of subtelties, technical details, **numerical approximations** that can impact results
- The more you know about a simulation, the better the **interpretation** will be
- In some cases, machine learning algorithms can reverse-engineer semi-analytical models
- In some cases, machine learning algorithms can learn numerical effects