Dark matters in EOSG Future

Fellowship project: developing an online collaborative platform to serve astro-particle physics communities

Elena Gazzarrini

EOSC-Future

COMPLETE COMMON INFRASTRUCTURE

OPEN SOURCE SCIENCE

ANALYSIS PRESERVATION

PLATFORM to develop, deploy, erent elogies expose and preserve scientific workflows

WEB SERVICES

OBJECTIVE

The project will serve as a science driver for other communities

Synergies

for software preservation

DATA LAKE for data Injection, Replication, Processing

DATA LAKE as a Service for user interface and online services

SCIENCE

postdocs in LAPP, CERN and FAU are already testing the infrastructure

reana

for workflows preservation in collaboration with IT-CDA

SCIENTIFIC MOTIVATION

Why is this useful to the astro-particle physics community?

Science Project: Dark Matter

- ightarrow Galaxy rotation curves --> a larger amount of gravitational mass is expected to exist in the universe
- ightarrow It does not interact with the electromagnetic filed and cannot therefore be seen
- ightarrow Many DM candidates. Many experiments target the problem. Many different research approaches.

Expected outcomes

OBJECTIVE

- collect all the digital objects + workflows in a cohesive way
- output combined plots
- provide an interdisciplinary open science example from bottom-up effort

Illustrative example

Indirect detection plane

Illustrative example

TIMELINE

First REANA implementation interfaced with ESCAPE Data Lake

Postdocs make progress in data analysis

Onboarding of other experiments

Full set of results from data analyses

Creation of final plots

Consolidation and dissemination

TECHNICAL IMPLEMENTATION

What exists already and what is being implemented?

Analysis workflow

Experimental DATA

Including
reconstruction and
calibration path

Including
background
subtraction,
estimation and
statistical
analysis

Interpretation of results

COMBINATION of
results from
different
experiments

COMPARISON of
results with other
searches

Challenge for automatisation of periodic data injection from different institutes

DISCLAIMER: Making FAIR data useful is difficult!!

"CERN LHC and CERN CAST generate constraints on WIMP and axion DM, which in turn yield different predictions for observational astronomy (e.g. CMB polarisation), but it is difficult for an observational astronomer to engage with the original CERN constraints. And vice-versa". (S.Serjeant, astronomer at Open University, UK)

Analysis workflow

Generation and simulation of events

Experimental DATA

Including reconstruction and calibration path

Analysis

Including background subtraction, estimation and statistical analysis

Interpretation of results

COMBINATION of results from different experiments

COMPARISON of results with other searches

DARKSIDE

ESCAPE's Data Lake running on a K8s cluster: storage orchestration data management

WebUI:

DataLake-as-a-Service (credits to Riccardo Di Maria, Muhammad Aditya Hilmy)

reana

a platform to reproduce workflows running on various computing backends

THE VIRTUAL RESEARCH ENVIRONEMNT (VRE)

An online collaborative interactive platform: the way forward

VRE PRINCIPLES

WebUI

interface

To facilitate onboarding.
Good
documentation
is key.

Scalability

Possibility of running jobs at various scales: from scientist's latops to large scale resources.

Portability

Many users
interacting with
infrastructure at
the same time.
Members will be
able to upload the
content directly.

CI/CD

data

software

Automating
deployment of
infrastructure
and updating of
software
versions.

Flexibility

pipelines

Supports different formats of data, containerization techniques, job submission protocols

The VRE server

The VRE server

Thank you! Questions?

E-mail

elena.gazzarrini@cern.ch

VRE website

https://escape2020.pages.in2p3.fr/virtual-environment/home/

Where to find me

Building 513-1-014