First ILANCE workshop on gravitational-waves

Summary

Matteo Barsuglia CNRS/APC and ILANCE

0 B S E R V I N 01 2015 - 2016	GN		02 2016 - 2017								03a+b	
36 31	23 14	14 77	31 20	п 76	50 34	35 24	31 25	15 13	35 27	40 29	22	25 18
63	36	21	49	18	80	56	53	≤2.8	60	65	105	41
CW150214	cwisiotz	CW151226	GW170104	сwrтоков	cwrrarze	сwrлакоя	cwr70e14	GW/708/7	сwrroelia	CW170023	CW190403,051519	cw190408.181802
30 8.3	35 24	48 32	41 32	2 14	107 77	43 28	23 13	36 18	39 28	37 25	66 41	95 69
37	56	76	70	3.2	175	69	35	52	65	59	101	156
GW190412	CW190413_052954	CW190413.134308	GW190421,273856	cwr90425	GW190426, 190642	cw190503_185404	CW190512_180774	CW190533, 205428	GW190514.065416	cw190317.055101	CW190519,153544	CW190521
42 33	37 23	69 48	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	38 29
71	56	111	87	56	90	99	19	30	55	20	17	64
CW190521.074389	CW190527.092055	GW190662,175927	CW190620.030421	GW1906430, 3852005	CW190701_203306	GW190706_222841	CW190707,093328	сw190708.233457	CW190779, 295514	GW190720,000836	GW190725,174728	cwreorzr.ocoass
12 81	42 29	37 27	48 32	23 2.6	32 26	24 10	44 36	35 24	44 24	9.3 2.1	89 5	21 16
20	67	62	76	26	55	33	76	57	66	11	13	35
CW190728_064510	GW190751_140936	CW190003_022701	CW190805_211137	CW190814	CW190838.063405	cw190838.065509	CW190980_112807	CW1909I5,235702	CW190916_200658	GW190917_154630	CW190924_021846	CW790925-255845
40 23	81 24	12 7.8	12 79	11 7.7	65 47	29 5.9	12 8.3	53 24	11 6.7	27 19	12 8.2	25 18
61	102	19	19	18	107	34	20	76	17	45	19	41
CW190925_050236	GW190928.012149	GW1909550_1535541	GW191103,012549	CW191105_143521	cwranios.cio717	cwiaiii2.07753	GW191126.115259	GW198127.050227	GW791129.134029	GW191204_110529	CW190204.171526	cwnarzis_223052
12 7.7 19 cw191216_25338	31 1.2 32 сwriatizia, назгао	45 35 76 CW191222-033537	49 37 82 GW191230_180458	9 19 11 GW200105_M32436	36 28 61 CW200112_155838	59 14 7.2 cw200115_042309	42 33 71 GW200126 022011	34 29 60 CW200129_065458	10 7.3 17 GW200202_154333	38 27 63 CW/200208_130117	51 12 61 GW200208.2226077	36 27 60 5W200209.085452
24 2.8	51 30	38 28	87 61	³⁹ ²⁸	40 33	19 14	38 20	28 15	36 14	34 28	13 7.8	34 14
27	78	62	141	64	69	32	56	42	47	59	20	53
GW200210.092254	CW200276_220804	GW200239,09443	CW200220,069928	cw200220_134650	CW20024_222234	cw200225.060421	cw200302_015881	cw200306.093714	GW200308.173609	cw200371,15853	cw200396,295756	CW200322.09833

The maint intelligent part provide the structure for detection. They exter have a prototoly, of her

INC Control of Local

Y.Zhao – KAGRA filter cavity project and TAMA exp

Workshop on the development of innovative tools for new collaborations within gravitational wave detection experiments

ICRR

JGW-G2214029

KAGRA filter cavity project and frequency dependent squeezing experiment at TAMA

Y. Zhao on behalf of the KAGRA collaboration

2022.4.15

Frequency dependent squeezing measurement

Y.Zhao – KAGRA filter cavity project and TAMA exp

- TAMA: One of the first demonstration of squeezing in
 ~ 100 Hz bandwidth full scale prototype
- Test bench for new control schemes: auxiliary frequency (green) and coherent control sidebands
- In the future: possible test bench for EPR, three-mirror cavity (tunable finesse)
- Already French-Japanese collaboration: exchanges of researchers and students → Continue the collaboration (also using NEWS and PROBES EU project from France)

E.Capocasa – squeezing in Virgo

Frequency dependent squeezing measurement

• Ellipse rotation at ~50Hz -> shot noise level at low frequency

- Excess of losses (~35%) -> sub optimal alignment conditions
- Detuning stability to be better characterised

Scattered light contamination

• Evidence of local oscillator scattered light by Homodyne PD

• Effect reduced with the locking precision improvement and active stray light mitigation

E.Capocasa – squeezing in Virgo

KAGRA/Virgo collaboration within FDS activities

• FDS demonstration at Tama: joint work of KAGRA and Virgo members

• Visits and exchange periods: hopefully more frequent after covid emergency resolution

PHYSICAL REVIEW Editors' Suggestion Featured in Physics	LETTERS 124, 171101 (2020)				
	cuum Source for Broadband Quantum Noise d Gravitational-Wave Detectors		PHYSICAL REVIEW D 98, 022010 (2018)		
Yuhang Zhao ^{1,2} Naoki Aritoni, ³ Eleonora Capocasa ^{0,1,*} Matteo Leonardi, ^{1,+} Marc Eisenmann, ⁴ Yuefan Guo, ⁵ Eleonora Polini ^{0,4} Akihiro Tomura, ⁶ Koji Arai, ⁷ Yoichi Aso ^{0,4} Yao-Chin Huang, ⁸ Ray-Kuang Lee ^{0,8} Harald Lück ^{0,9} Osamu Miyakawa, ¹⁰ Pierre Prat, ¹¹ Ayaka Shoda ^{0,4} Matteo Tacca, ⁵ Ryutaro Takahashi ^{0,1} Henning Vahlbruch, ⁹ Marco Vardaro ^{5,12,13} Chien-Ming Wu ^{0,6} Matteo Barsuglia, ¹¹ and Raffaele Flaminio ^{1,1} ¹ National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan ³ The Graduate University for Advanced Studies(SOKENDAI), 2-21-1, Osawa, Mitaka, Tokyo, 181-8588, Japan ³ Elaporationent of Physics, University of Tokyo, 7-3-1 Hongo, Tokyo, 11-0033, Japan ³ ¹ Laboratorie d'Anneco ¹ -eVieux de Physicale de Particules (LAPP), Université Savoie Mont Blanc,			Measurement of optical losses in a high-finesse 300 m filter cavity for broadband quantum noise reduction in gravitational-wave detectors Eleonora Capocasa, ^{1,2,*} Yuefan Guo, ³ Marc Eisenmann, ⁴ Yuhang Zhao, ^{1,5} Akihiro Tomura, ⁶ Koji Arai, ⁷ Yoichi Aso, ¹ Manuel Marchiò, ¹ Laurent Pinard, ⁸ Pierre Prat, ² Kentaro Somiya, ⁹ Roman Schnabel, ¹⁰ Matteo Tacca, ¹¹ Ryutaro Takahashi, ¹ Daisuke Tatsumi, ¹ Matteo Leonardi, ⁴ Matteo Barsuglia, ² and Raffaele Flaminio ^{4,1}		
CNRS/N278, F.7 ⁵ Nikhef, Science Park, ⁶ The University of Electro-Communicatic ¹ LIGO, California Institute of T ⁹ Institute of Photonics Technologies, N ⁹ Institut für Gravitationsphysik, Leibniz, Universi (Albert-Einstein-Institut), Ca ¹⁰ Institute for Cosmic Ray Research (IC Kamioka-cho, Hi ¹¹ Universitié de Paris, CNRS, Astro ¹² Institute for High-Energy Physics, University of A ¹¹ Universitiá di Padova, Dipartimen	Improving the stability of frequen control of filter cavity length, align Phys. Rev. D	nme	dependent squeezing with bichromatic nt, and incident beam pointing e. Yuefan Guo, Eleonora Polini, Koji Arai, Yoichi Aso, Martin van Beuzekom, Yao-Chin Ia, Matteo Tacca, Ryutaro Takahashi, Henning Vahlbruch, Marco Vardaro, Chien-Ming		

- Important testbench with squeezing injection in the interferometer
- Collaborations on-going (Y.Zhao @ Virgo for a month)

B.Mours – Newtonian calibrator

O3 results

Same shape as PCal

5

Systematic uncertainties

NCal basic principle

- Rotor made of two masses
 - Center of mass is not moving .
 - The non linear Newtonian force creates the signal
 - Signal at twice the rotor frequency;
 - Signal proportional to $1/d^4$ effect \rightarrow Mirror to NCal distance is critical
- Expected benefits
 - Signal depends mainly on the rotor geometry, mass and position
 - Mass of the mirror cancels out
 - Correction for a real mirror geometry compared to point particle: around 1%
 - No aging effect of the signal
 - Simple interface with the detector
 - Could be moved from one mirror or ITF to another
- An old principle, tested during O2:
 - "First test of a Newtonian calibrator on an interferometric gravitational wave detect . CQG. 35, 235009, 2018

> 3

-0.03

At the level of the PCal uncertainties Dominated by NCal-mirror distance

76]	h_{rec}/h_{inj} far [%]
	1.31
	0.19

Amplitude ratio

Only

A Near NCal pos

PCal NE

Near NCal pos. cort.
 Far NCal pos. cort.

Frequency [Hz]

Far NCal pos. co

Frequency (Hz

Parameter	uncertainty	formula	h_{rec}/h_{inj} near [%]	h_{rec}/h_{inj} far [%	6
NCal to mirror distance d	$6.4 \mathrm{~mm}$	$4\delta d/d$	2.02	1.31	
NCal to mirror angle Φ	5.0/3.3 mrad	$\delta\Phi\sin\Phi$	0.28	0.19	
NCal vertical position z	$1.3 \mathrm{mm}$	$5/2(z/d)^2$	0.03	0.01	
Rotor geometry	see tab	le 1	0.53	0.53	
Modeling method	see end of s	ection 4	0.018	0.017	
Mirror torque from NCal	see end of s	section 4	0.05	0.03	
Total	quadrati	c sum	2.1	1.4	
	NCal to mirror distance d NCal to mirror angle Φ NCal vertical position z Rotor geometry Modeling method Mirror torque from NCal	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

B.Mours – Newtonian calibrator

Improving the NCal rotor for O4

- Simpler geometry
 - Remove: the O3 external ring and central disk
- Make it thicker
- Benefit
 - Force x 2 compared to O3
 - Simplify the metrology and prediction
- ▶ Challenge: air motion \rightarrow friction
 - Go to 70 W motor
- Current test: 80 Hz rotor speed achieved
- Will are building a three sectors rotor to probe h(t) up to 200 Hz
- 8 6406

Improve the accuracy from less than 1 % (O4 goal) to less than 0.5 %. Improve the knowledge (and stability) of the NCal position Install an NCal system on the West End tower, To be able to inject accurate calibration signals on both arms. • Extend the frequency band cover up to at least 250 Hz (in h(t)). - This corresponds roughly to the frequency where 95 % of the BNS SNR is accumulated.

O5 NCal plans

- May need
 - To use denser material (could gain a factor 2.85 with stainless steel)
 - More powerful motor

 \rightarrow Work on new rotor

- ▶ Go to (partial vacuum)
- Use magnetic bearing (also good to reduce the mechanical vibration
- Fix any issue that may be observed during O4

D

-
- Important room for collaborations about on calibration (intercalibration, exchanges of N-cal / g-cal)

M.Leonardi – KAGRA sapphire mirrors

Introduction to "sapphire"

iLANCE worksh

KAGRA mirrors: Aluminum oxide (corundum)

Pro:

- Very high thermal conductivity at cryogenic temperature
- Transparent at 1064nm
- High density
- Good industrial manufacture techniques

• ...

- Cons: • Second hardest material in the world
- Birefringent material (in a-axis)

• ...

2022-04-15

- Candidate material for ET
- Virgo post-O5 1064 room temperature

Optical absorption in sapphire mirrors

To achieve a stable temperature for the test masses (ITM case):

 $P_{rad} + P_{BS}\alpha_{bulk}L + P_{arm}\alpha_{coat} < P_{cryo}$

Right side depends mainly on fiber diameters

• Suspension thermal noise is determined by fibers geometry

Left side can be minimized optimizing PRG and arm Finesse

- This choice has impact on ITF quantum noise
- (design): $P_{BS}\alpha_{bulk}L \approx P_{arm}\alpha_{coat}$

iLANCE workshop

M.Leonardi – KAGRA sapphire mirrors

ITMs bulk birefringence: p-pol detected

- Huge experience with sapphire mirrors in KAGRA !
- This will be crucial for the design of Einstein Telescope if sapphire selected
- Moreover: collaboration KAGRA-Virgo coating group, contacts with KAGRA-LMA
 10

T. Yokozawa – Detchar in KAGRA

🚯 03GK:Noise hunting

There are several result by performing the hammering test
Hammering test between IMC

and IFI chamber

- Found ghost beam after opening chambers
- BS and SR area
- Different frequency, scattered light from SRM?
- AS table and OMC chamber
- Some sensitivity limit by air compressor for gate valve
- Performed additional hammering test -> seismic

motion gave vibration to OMC

5

- Lock loss study (Search the reason why lose the Fabry Perot cavity)
 - Total 75 lock loss during O3GK (for >10 min lock)
 - One study for seismic motion (micro-seismic, earthquake and dam)

Analysis from causation

• PEM, lock losses, noise analysis and subtraction

T. Yokozawa – Detchar in KAGRA

Underground interferometer

- (My personal) Comment about underground environment
- · Difficult (Hard) point
 - · Access to experimental area
 - Some trouble (or need to turn on/off instruments) detected in control room
 > 10 min to center area -> +15 min to end area
 - · After heavy rain or snow melting water season, there are many waters in the experimental area
 - · Limiting experiment space
 - · Place of the essential instrument (Air compressor, pumps, coolers, …)
 - · Machine, circuit, cabling, …
 - Temperature control
 - We need to keep the temperature within 0.5 deg, especially for suspensions. Turn on/off of the one instrument varied the temperature.

Summary

- KAGRA detector characterization
- · Managed under the Operations Division
- · Various results are reported
 - · Current DetChar activities
 - · Noise hunting / acoustic injection toward the O3GK
 - · Offline noise subtraction using ICA
 - · Lock loss study
 - · Telephoto camera
- Some personal opinions for the underground experiment
- · Good point and difficult point

Welcome the question about DetChar for underground interferometer!

16

N.Arnaud – Detchar in Virgo

Virgo DetChar within Virgo & LVK

- Between O3a and O3b, using the 1-month commissioning break
- But also during sub-runs as well
- Connection with the LIGO DetChar group
- Already well-established for years!
- Virgo DetChar visibility
 - Within the Virgo collaboration and also more broadly within LVK

13

13

N.Arnaud – Detchar in Virgo

Outlook

- Long and challenging O3 run → Unvaluable experience gathered during 11 months data-taking + offline analysis
- Transitioning from final O3 analysis to O4 preparation
- Almost completed: now focus on O4
- Manifold improvements targeted
- Group organization and support from collaboration
- Mostly existing O3 frameworks
- Not many new projects
- → Tight constraints from limited personpower
 Not solved despite growing collaboration
- Benefiting from joint LVK activities
- An asset to make progress
- \rightarrow Happy to help KAGRA time- and resource-permitting
- Lot of lessons learned by O3 (during[®] a long data taking campaign)
- Difficulties in having "standardized" Virgo-KAGRA-LIGO tools
- Possible common projects/tools/collaborations?

T.Washimi-Underground environment characterization

4/13

10

Seismic Newtonian noise (NN) F. Badaracco et al., Phys. Rev. D 104, 042006 (2021) Perturbation of the gravity field due to a variation 10^{-15} ---- KAGRA sensitivity in the density ($\delta \rho$) of the surrounding media. - ET sensitivity 10^{-1} Acoustic NN Rayleigh-wave NN 10^{-19} Hz] Body-wave NN pos n°2 Body-wave NN pos n°5 [1/ $\delta\phi(\mathbf{r}_0, t) = -G \int dV \frac{\delta\rho(\mathbf{r}, t)}{|\mathbf{r} - \mathbf{r}_0|}$ 10-2 Strain | 10-23 -()-10-25 10^{-27⊥} 10[€] Frequency [Hz]

Estimated NNs are much below the design sensitivity of KAGRA, but larger than that of ET. Some new approaches (e.g. NN cancelation developing in Virgo) are necessary.

The underground is more stable with respect to transient external disturbances https://gwcenter.icrr.u-8/13 airplane tokyo.ac.jp/en/tonga-20220115

shorter than that of LIGO and Virgo This is because of the difference in the inner

surface of the walls, rather than the location.

Tonga volcano eruption signal at KAGRA

7/13

Tatsuki Washimi– Underground environment characterization

<u>Summary</u>

- Underground is low-noise and good for GW detectors.
- Underground environment is be studying at KAGRA.
 - <u>Seismic motion</u>: Well reduced at observation frequency, but not at a lower frequency.
 - <u>Acoustic field</u>: Stationary level is not so different from on-surface, but more stable.
 - <u>Magnetic field</u>: The situation is a little bit complicated and understudying.
 - <u>Water</u>: One difficulty of underground
- Understanding the underground environment is important for the next generation GW detectors.
- A wealth of data useful for Einstein Telescope
- Many contacts with Virgo-ET communities.
- Try to see if and how French community can also collaborate

13/13

T. USHIBA – Cryogenics

Main mirror suspension (Type-A suspension) in KAGRA

Cryogenic sapphire mirror is one of key features of KAGRA.

The sapphire mirror is suspended by four-stage cryogenic pendulum.

It is suspended from a huge tower called Type-A tower for vibration isolation.

Type-A suspension

Cryogenic payload

OpLevs and length-sensing OpLevs (LS OpLevs)

OpLevs configure gouy phase telescopes in order to distinguish beam shift and tilt.

 \rightarrow Three degrees of freedom can be detected by one set of OpLevs.

 Even though OpLevs measure the suspension motion with respect to the ground, noise level at high frequency is much better than PSs thanks to the quite environment of the underground site.

Cryogenic system in KAGRA

A cryogenic payload is stored inside the cryostat with two-layer radiation shields (80 K shield and 8 K shield).

Both HR and AR side of a mirror, there are 5-m cryogenic duct shield for reducing the thermal radiation from the beam tubes,

Large noise below 30Hz is due to air disturbances and decreases in the vacuum condition.

T. Ushiba – Cryogenics

Problem of the cooling (frosting issue)

- During the cooling, thick frost was formed on the mirrors, which causes drastic finesse drop of arm cavities.
- Since a part of finesse drop can be recovered when warming up the mirrors at 70 80 K, the main components of the frost seems N_2 .

Summary

- Using cryogenic sapphire mirror for reducing the thermal noise is one of key features of KAGRA.
- · Sensors and actuators are designed, considering cryogenic compatibility.
 - Reflective PSs with large sensing range.
 - OpLevs and length-sensing OpLevs.
 - Coil-magnet actuators.
 - "Ropeway style" moving mass
- Cooling mirros can occure the serious problem: frosting on the mirror.
 Vapor pressure of the molecules needs to be considered.
 Step by step cooling seems effective.
- Preparation of the payload and a part of cooling is ongoing toward O4.
- We hope our cryogenic experiences can help future gravitational wave detectors such as Einstein telescope.

• Crucial experience for Eisntein Telescope !

24

M.Was – Virgo commissioning

Interferometer commissioning highlights

- Upgrade sensors on optical bench suspensions
 - Scattered light pushed below 12 Hz
- Injection & Laser system robustness
 - ▶ 10 year old stability issues resolved
 ▶ Installed fiber EOM actuator with ×10 larger dynamic (~ 20 rad)
 - Iosses slowly increasing
- Achieved lock acquisition at 25W and then at 40W, then reduced input power to 33W
- Thermal compensation enabled, CO2 laser actuator aligned
- Arm Fabry-Perot cavities optical characterization
- New output mode cleaner locked, and interferometer in DC read-out

M.Was – Virgo commissioning

- New facts, difficulties (high power effects, optical spring, SR alignment)
- Role of the simulation!
- Possible collaborations, exchanges of commissioners and development of simulation

Y.Aso – KAGRA commissioning

bise Budget

arXiv:2203.07011

Alignment Sensing and Control

- ASC is much more difficult and messier than LSC (Universal Truth)
- It is especially hard for KAGRA because of the birefringence

RSE lock trial

() ()

- · Suspensions were not quiet enough
- No WFS implemented
- Not enough time to tune feedback filters

High power laser

- 60W amplifier (neoLASE)
- · Lower intensity noise than the current laser

Curren

Shot noise

103

Mode shape is not great

Free-ru

Out-of-IC

N 1

8 10

• 80% transmission of a test cavity

102

Frequency [Hz]

10

103

10

21

Y.Aso – KAGRA commissioning

Alignment Sensing and Control

- ASC is much more difficult and messier than LSC (Universal Truth)
- It is especially hard for KAGRA because of the birefringence

High power laser

- 60W amplifier (neoLASE)
- Lower intensity noise than the current laser
- Mode shape is not great
 - 80% transmission of a test cavity

- Possibility to collaborate on several commissioning items
 - Exchange of commissioners and cotutoring of students
 - Regular meetings (already a few LIGO-Virgo common calls)
 - Sharing of simulation tools

J.Degallaix – Einstein Telescope

Goal of Einstein Telescope: to be 10 times more sensitive

compared to 2nd generation LIGO and Virgo

The key parameters

alararardrananananananananananananana

Parameter	ET-HF	ET-LF
Arm length	10 km	10 km
Input power (after IMC)	500 W	3 W
Arm power	3 MW	18 kW
Temperature	290 K	10-20 K
Mirror material	fused silica	silicon (sapphire
Mirror diameter / thickness	62 cm / 30 cm	45 cm/ 57 cm
Mirror masses	200 kg	211 kg
Laser wavelength	1064 nm	1550 nm
SR-phase (rad)	tuned (0.0)	detuned (0.6)
SR transmittance	10 %	2010/0
Quantum noise suppression	freq. dep. squeez.	freq. dep. squeez.
Filter cavities	1×300 m	2×1.0 km
Squeezing level	10 dB (effective)	10 dB (effective)
Beam shape	TEM_{00}	TEM_{00}
Beam radius	12.0 cm	9 cm
Scatter loss per surface	37 ppm	37 ppm
Seismic isolation	SA, 8 m tall	mod SA, 17 m tall
Seismic (for $f > 1$ Hz)	$5 \cdot 10^{-10} \mathrm{m}/f^2$	$5 \cdot 10^{-10} \mathrm{m}/f^2$
Gravity gradient subtraction	none	factor of a few

https://apps.et-gw.eu/tds/ql/?c=15418

J.Degallaix – Einstein Telescope (and post-05)

AdV sensitivity evolution from O3 to post-O5

Parameter	O4 high	O4 low	O5 high	O5 low	VnEXT_low	
Power injected	25 W	40 W	60 W	80 W	277 W	
Arm power	120 kW	190 kW	290 kW	390 kW	1.5 MW	
PR gain	34	34	35	35	39	
Finesse	446	446	446	446	446	
Signal recycling	Yes	Yes	Yes	Yes	Yes	
Squeezing type	FIS	FDS	FDS	FDS	FDS	
Squeezing detected level	3 dB	4.5 dB	4.5 dB	6 dB	10.5	
Payload type	AdV	AdV	AdV	AdV	Triple pendulum	
ITM mass	42 kg	42kg	42 kg	42 kg	105 kg	
ETM mass	42 kg	42kg	105 kg	105 kg	105 kg	
ITM beam radius	49 mm	49 mm	49 mm	49 mm	49 mm	
ETM beam radius	58 mm	58 mm	91 mm	91 mm	91 mm	
Coating losses ETM	2.37e-4	2.37e-4	2.37e-4	0.79e-4	6.2e-6	
Coating losses ITM	1.63e-4	1.63e-4	1.63e-4	0.54e-4	6.2e-6	
Newtonian noise reduction	None	1/3	1/3	1/5	1/5	
Technical noise	"Late high"	"Late low"	"Late low"	None	None	
BNS range	90 Mpc	115 Mpc	145 Mpc	260 Mpc	500 Mpc	

J.Degallaix – Einstein Telescope (and post-05)

Crystalline substrates

- Huge inputs from KAGRA to Einstein
 Telescope !
 - Cryogenics, mirrors, materials, underground environment,...

- Thanks to T.Kajita and S.Katsanevas for the very inspiring welcome talks!
- Thanks to T.Kajita and M.Gonin, ILANCE directors