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Outline

• Quantum noise of gravitational wave 

detectors and its reduction


• KAGRA filter cavity project


• Frequency dependent squeezing 
experiment at TAMA
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• Quantum nature of light: 


• Zero point energy


• Heisenberg uncertainty principle

Quantum noise and its reduction
ε(z, t) = Δε sin(kz + ωt + Δϕ)

Vacuum

fluctuation

Frequency [Hz]

Δε

Δϕ

• Zero point energy gives 
quantum noise


• Radiation pressure noise 
(from ) causes mirror 
motion


• Shot noise (from ) appears 
at the photo detection

Δε

Δϕ

• Heisenberg uncertainty principle


• Squeezed state can reduce either 
 or , but not simultaneously Δε Δϕ

Semi-classical 
way to 

understand 
quantum noise
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Credit: LIGO gwinc



• Frequency dependent squeezing can make broadband 
quantum noise reduction


• ‘Place’ good squeezed angle at good frequency


• Filter cavity can impose this frequency dependence

Broadband quantum noise reduction

Frequency dependent 
squeezed vacuum state

Frequency

Filter cavity

Squeezer

Credit: LIGO gwinc
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Expected KAGRA quantum noise in O5

• The blue curve is expected to be highly 
possible to achieve


• In this case, the use of frequency 
independent squeezing could be very 
beneficial (assuming frequency noise 
can be further reduced)


• If 3dB squeezing can be achieved, it is 
equivalent to increase laser power by a 
factor of 2

Figure is cited from Y. Michimura JGW-T1809078 

5

• If design sensitivity can be achieved, the 
use of frequency dependent squeezing 
will be very beneficial



• 65m filter cavity


• Still in design phase


• Not yet funded

KAGRA filter cavity (KFC) project

6This page is from Y. Aso JGW-G2213986 and M. Eisenmann G2113322

• Right side figure shows 
KAGRA sensitivity 
improvement as a function 
of filter cavity length


• Filter cavity round trip 
losses are fixed to be 
25ppm

• An international 
project including 
groups from ICRR, 
KASI, KEK, NAOJ, 
NTHU



• To estimate which type of suspension for filter cavity mirrors and relay optics


• To evaluate how many Faraday isolators


• Get information about interferometer dark port power

KFC scattered noise calculation

This page is from M. Page JGW-2113443 and G2213980
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• Customized faraday isolator to 
achieve low optical losses and 
high isolation

KFC faraday isolator and interface optics
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• Interface optics design


• Simulate beam size and path


• Design telescope


• Decide alignment control sensor position
From H. Chen JGW-E2213827

From J. G. Park JGW-G2213830



• Our goal: full scale filter cavity prototype to demonstrate 
frequency dependent squeezing with rotation at 70Hz

Frequency dependent squeezing 
experiment at TAMA (overview)

• Cavity length: 300m


• Finesse: 4400


• 9dB frequency 
independent squeezing
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TAMA arm (just below ground) (credit: M. Page)
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Credit: 

Michael Page

Squeezed 
vacuum source 

left side
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Squeezed 
vacuum source 

right side


and


The first entered 
vacuum 
chamber

Credit: 

Michael Page



Frequency dependent squeezing measurement
• Assuming filter cavity parameters (300m, round trip 

losses smaller than around 100ppm, input mirror 
transmissivity 0.136%) and , and filter 
cavity has linewidth  and is detuned by 
linewidth, gravitational wave detector senses only the 
squeezed quadrature


• If we use our squeezer and filter cavity for KAGRA, 
we expect a quantum noise reduction at all 
frequencies (1dB at low frequency and 3.4dB at high 
frequency)


• We are one of the first teams achieved this result 
around the world, which is suitable for advanced 
gravitational wave detectors

ΩSQL ≃ 70 Hz
∼ ΩSQL / 2

• However


• Working point is drifting


• Backscattering below 30-50Hz
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Frequency dependent 
squeezed vacuum state

Frequency

Horizontal line indicates 
homodyne angle 0 degree



SHG OPO

Main laser source

Acousto-Optic Modulator (AOM) Electro-Optic Modulator (EOM)

               Flipping mirrorBeam-Splitter

PiezoElectric Transducer (PZT) actuated mirror

1064 nm 532 nm Suspended mirror Faraday Isolator

Moving beam dumpQuadrant photo-detector Photodiode

In-vacuum Injection Telescope

Filter cavity control and Squeezed Vacuum Source

In-vacuum 300 m long Filter Cavity
QPD 

WFS 1

WFS 2

PD 1

PD 2

Homodyne

Green dichroic mirror

IR dichroic mirror
• Since squeezed vacuum contains only negligible 

power, auxiliary control fields are needed

Control filter cavity with green beam

13

• Same cavity


• Green/Infrared 
overlapping

Living Review of Relativity, C. Bond et al, 19, 2016

• Different mirror 
wavefront error


• Results in 
different optical 
axis

Frequency [Hz]



SHG OPO
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IR dichroic mirror• Due to an AOM on green beam, a initial detuning 
condition for green and infrared beams cannot be held 
(infrared detuning will be induced)

Control filter cavity with green beam
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• This infrared detuning shows up when


• Cavity length change


• Green control beam frequency change


• Cavity unlock and lock reacquired

• Virgo filter cavity sub-carrier control scheme should 
have the same issue, but I heard a novel mitigation 
method will be employed

Frequency [Hz]
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IR dichroic mirror• A Pound-Drever-Hall control method utilize phase modulation 
 to extract signal, but there will be unavoidable amplitude 

modulation  to add noise
mp

ma

Control filter cavity with green beam
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E = E0ei(ω0t+mp cos(ωmt))(1 + ma cos(ωmt + ϕ))
We get a DC power with magnitude 

 after demodulation at  maE2
0 ωm

• According to our measurement of 4Hz detuning drift 
caused by residual amplitude modulation, we have  

ma

mp
≃ 0.01

• An EOM with crystal wedged by 4 degree should make the 
above ratio reduced by a factor of 100

Frequency [Hz]



• Check detuning change with filter cavity alignment change

Control filter cavity with green beam
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• Detuning change when 
end mirror is scanned• Automatic alignment loop closed

• Automatic alignment loop and 
pointing loop closed



• The filter cavity detuning is more sensitive to alignment 
change in this control scheme

Control filter cavity with green beam
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• After alignment is controlled 
with green, we see detuning 
fluctuation mainly from the 
AOM effect and residual 
amplitude modulation

• A check from measuring 
frequency dependent 
squeezing proves the 
stability of detuning

About 8Hz 

About 6Hz 

However, due to different optics used for green and infrared beams, this 
scheme cannot guarantee a proper detuning control after a few days



• Coherent control fields are used for control squeezing phase 
relative to pump beam (to decide amplitude/phase squeezing) 
and local oscillator (to decide homodyne angle) 

Control filter cavity with 
Coherent control sidebands
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• However, when coherent control sidebands enter filter cavity, 
the relative phase between upper and lower sidebands gets 
modulated by filter cavity length noise. This modulation is 
utilized to lock filter cavity

• We demodulate the beat between 
upper and lower CC sidebands to 
get error signal. When a decent 
demodulation phase is chosen, we 
can lock one of the CC sideband 
on resonance



• Coherent control sidebands locking can 
achieve locking accuracy much better than 
the green control method


• This is no relative misalignment between 
squeezing and coherent control sidebands

Control filter cavity with Coherent control sidebands
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• A 9Hz detuning drift is observed in this scheme 

by checking frequency dependent squeezing

• However, the filter cavity alignment is not yet 
controlled by coherent control sidebands

NAOJ elog 2864



• We use frequency dependent 
squeezing measurement to fit 
the detuning information


• In this fit, we usually let 
squeezing level, optical 
losses, homodyne angle and 
filter cavity detuning for free


• However, other parameters 
could change or not well 
estimated. This will cause the 
estimation of detuning not 
accurate

About extracting 
filter cavity 
detuning 
information
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• We see a strong dependence 
between two parameters as 
following


• Mode matching from squeezer to 
filter cavity/squeezing level


• Mode matching from squeezer to 
homodyne/optical losses



• Frequency independent characterization indicates a low OPO escape efficiency, thus a new 
OPO is constructed and going to be tested in terms of squeezing soon

New OPO construction and characterization
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• Losses in terms of

• Dichroic mirror 1%


• Faraday isolator 3%


• Mirror losses/lenses losses 2%


• Detection (in)efficiency 3%

• Photodiode quantum (in)efficiency 0.5%


• Photodiode AR coating 0.5%


• Homodyne clearance (dark noise): 1%


• OPO escape (in)efficiency 8.6%

NAOJ elog 2807

NAOJ elog 2781

NAOJ elog 2682

From cavity scan, we 
extract OPO intra-
cavity losses to be 

0.2%.


This should cause 
OPO escape efficiency 

of 97.5% (2.5% 
losses)



• The in-vacuum Faraday isolator, used to extract frequency dependent squeezing from the 
filter cavity reflection, introduces optical losses of 11%

In vacuum Faraday characterization and upgrade
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Green mirror Dichroic mirror

Faraday rotator
Half wave plate

Polariser 

Polariser 

• The faraday rotator was found to 
be only able to rotate polarization 
by 47 degrees but not less

• We have bought a new Faraday 
rotator to replace it, but the 
delivery got delayed



• Frequency dependent squeezing is a promising way to have broadband quantum noise 
reduction


• Several research groups are planning to realize frequency dependent squeezing for KAGRA


• TAMA, as a full-scale filter cavity prototype, is a test place for filter cavity length and 
alignment control methods

Summary
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• Setting up optical levers for suspended mirrors, which could be used for mitigating back 
scatter noise


• Setting up new DGS system, which provides more data acquisition channels


• Investigating and reducing squeezing degradation sources, such as new OPO and Faraday 
isolator


• Considering to test the filter cavity alignment control with coherent control sidebands

Outlook



Thank you for your 
attention!



• A Pound-Drever-Hall control method utilize phase modulation 
 to extract signal, but there will be unavoidable amplitude 

modulation  to add noise
mp

ma

Control filter cavity with green beam
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• G =16k is photo detector amplifier gain,  = 0.65 is photo 
detector efficiency,  = 0.3/100 is amplitude modulation depth, 
P = 1e-4 is the power reaching photo diode,   = 670 is the 
transfer function between photo detector voltage output and 
detuning change


• We measured detuning fluctuation around 4Hz. Considering the 
above equation, the ratio between ma and mp is 0.02

η
ma

TFfc

E = E0ei(ω0t+mp cos(ωmt))(1 + ma cos(ωmt + ϕ))
We get a DC power with magnitude 

 after demodulation at  maE2
0 ωm

• We get influence of residual amplitude modulation as
G × η × ma × P × TFfc



• Suspended mirrors position is controlled by coil-magnet, but earthquake causes magnet 
drop

Suspended mirrors magnet drop after earthquake
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• Automatic check of coil-magnet after earthquake


• Coherence of signal is a good indicator



KAGRA quantum noise in O3GK

Radiation pressure noise
Shot noise

• Shot noise is limiting 
between 400Hz and 2kHz


• About 96% power is lost 
from interferometer 
output to detection PD


• 50W at BS

Figure is cited from KAGRA O3GK noise budget paper: arxiv 2203.07011

5


