Frequency dependent squeezing for AdVirgo+

E. Capocasa on behalf of Virgo QNR team

ILANCE workshop 15th April 2022

1

AdVirgo Frequency independent squeezing in O3

AdVirgo+ frequency dependent squeezing for O4

AdVirgo+ frequency dependent squeezing for O4

Quantum noise reduction (QNR) system overview

Infrastructural work completed in December 2020

Quantum noise reduction (QNR) system overview

Squeezed vacuum source

- Very low phase noise: 3 mrad
- Size: 1m², duty cycle: ~100%
- Minor modification for FDS in October 2020

Filter cavity mirrors and round trip losses

- Diameter: 15 cm, Radius of curvature ~ 558 m
- Flatness: ~0.6 nm RMS Ø 50 mm
- Dichroic coating
 - IR finesse ~11000
 - GR finesse ~100

Measured round-trip losses: ~ 30 ppm

- New suspensions: double pendulum sitting on inverted pendulum bench
- Optical levers on the marionette (Tx, Ty, Tz) and on the mirror (Tx, Ty)
- Mirror residual motion below 1 urad

Filter cavity suspensions

Filter cavity longitudinal control with green beam

- (added later to suppress noise in the ~100 Hz region)

SQZ main laser

Filter cavity longitudinal control with IR (subcarrier)

- Subcarrier laser offset with a PLL by 1.2 GHz wrt the squeezer main laser
- Tune AOM on the green path to find the co-resonance condition between IR and GR in the filter cavity
- Hand-off the lock from Green PDH signal to SubCarrier error signal (0.1% pick off in reflection from FC)
- Only tested with feedback to mirrors (UGF <100). Residual rms 8 Hz
- Cannot be used for standalone FDS characterisation

12

_	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	_	_
1	1	25			1	1	1	1			1	25	1	1			1	1	ł	1			1	
																			2		÷			
																								_
																			1					_
																			1					-
																			2					
																			5					
																			1					
																			ï					-
																			2					
																								_
																			ï					-
-					-								-				1		1		1		1	-
																	1		1		1		1	
																			1					-
-								-	-		-		-	-					1	-	1			-
																			1					_
																			5					
																			1					-
																			1					
		11										11					-		1				-	
																			1					
-	_	1										1							1					
9	ŝ	-		1	r							-							÷					_
Ľ	1	7.	÷	-	c	2	Ċ,	÷	ċ	2			1		1		1	1						
			ĩ	1	1	ć	ý	í,	7	1	ł	٠.,	í,	Ĵ	ì	ĩ		ĩ	Ĩ	ï		ĩ		
						7			2	5			5	7	÷									_
		÷.,							7	1	s	с.				í.	7	1	h	4				_
												٠.	c	ŝ					1			Ľ.		
													•	۰.	ŝ.				1		1	٦	c	-
		-										-			`								٦	
																1	٤				1		1	۲T
																	٦							ъł
					ŀ													5	÷.					4
					L														٦.					. 1
					1															٩				
					L																L			
		:		-	ŀ							:							:		ķ			_
:	:			:	ŀ	1	:	:		:	:	:	:	:	:		:	:	:		ļ	í	1	=
		:				i													:		ļ	ļ		=
-	-		-			İ	-	1	1		-		-	-	-	-	-	-	-	-	ļ	ļ	-	
-	-		1			İ	-	1		-	-		-	-	-	-		-	-	-	ļ	1	1	1111
	:		1				:														ļ	ļ	1	
			1																			1	1	
																							1	
																	-	-						
																	-							
																								TILL THE
																								11111 T* H
																								11111
																								5
																								11 E E E E E E E E E E E E E E E E E E

Filter cavity angular control

SERVO

- First implemented on green beam with dithering line
 - On cavity mirrors -> beam centering
 - On steering mirrors -> maximizing axis overlap

Frequency dependent squeezing measurement

- Ellipse rotation at ~50Hz -> shot noise level at low frequency
- Excess of losses (~35%) -> sub optimal alignment conditions
- Detuning stability to be better characterised

Frequency dependent squeezing measurement

- Ellipse rotation at ~40Hz -> below shot noise level at low frequency
- Estimated losses 17%

Scattered light contamination

- Evidence of local oscillator scattered light by Homodyne PD
- Effect reduced with the locking precision improvement and active stray light mitigation

 Note that local oscillator will be switched off during SQZ injection in ITF

- Frequency dependent squeezing for AdVirgo+ commissioning is well advanced ► Ellipse rotation measured at ~50 Hz
- Further optimisation of standalone FDS system:
 - Automatic alignment finalisation
 - Detuning and stability characterisation
 - Scattered light mitigation
 - Longitudinal control improvement
 - Repeat FDS measurement with optimal conditions
- Preparation and commissioning of SQZ injection into ITF

- Quantum noise reduction plans are currently relying on filter cavity technology for O5, post O5 and even 3rd generation detectors
- Main effort will be devoted to the optimisation of this technique
 - Loss reduction

 - Phase noise and scattered light mitigation Optimized design and control strategies

KAGRA/Virgo collaboration within FDS activities

- FDS demonstration at Tama: joint work of KAGRA and Virgo members
- Visits and exchange periods: hopefully more frequent after covid emergency resolution

PHYSICAL REVIEW LETTERS 124, 171101 (2020)

Editors' Suggestion

Featured in Physics

Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors

Yuhang Zhao^{1,2} Naoki Aritomi,³ Eleonora Capocasa^{3,1,*} Matteo Leonardi,^{1,†} Marc Eisenmann,⁴ Yuefan Guo,⁵ Eleonora Polini⁰,⁴ Akihiro Tomura,⁶ Koji Arai,⁷ Yoichi Aso⁰,¹ Yao-Chin Huang,⁸ Ray-Kuang Lee⁰,⁸ Harald Lück⁰,⁹ Osamu Miyakawa,¹⁰ Pierre Prat,¹¹ Ayaka Shoda⁰,¹ Matteo Tacca,⁵ Ryutaro Takahashi⁰,¹ Henning Vahlbruch,⁹ Marco Vardaro,5,12,13 Chien-Ming Wuo,8 Matteo Barsuglia,11 and Raffaele Flaminio4,1 ¹National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan ²The Graduate University for Advanced Studies(SOKENDAI), 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan ³Department of Physics, University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan ⁴Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Université Savoie Mont Blanc, CNRS/IN2P3, F-7 ⁵Nikhef, Science Park, Accepted Paper ⁶The University of Electro-Communicatio ⁷LIGO, California Institute of Te Improving the stability of frequency-dependent squeezing with bichromatic ⁸Institute of Photonics Technologies, N control of filter cavity length, alignment, and incident beam pointing ⁹Institut für Gravitationsphysik, Leibniz Universi (Albert-Einstein-Institut), Ca Phys. Rev. D ¹⁰Institute for Cosmic Ray Research (IC Kamioka-cho, Hid Yuhang Zhao, Eleonora Capocasa, Marc Eisenmann, Naoki Aritomi, Michael Page, Yuefan Guo, Eleonora Polini, Koji Arai, Yoichi Aso, Martin van Beuzekom, Yao-Chin ¹¹Université de Paris, CNRS, Astro Huang, Ray-Kuang Lee, Harald Lück, Osamu Miyakawa, Pierre Prat, Ayaka Shoda, Matteo Tacca, Ryutaro Takahashi, Henning Vahlbruch, Marco Vardaro, Chien-Ming ¹²Institute for High-Energy Physics, University of A Wu, Matteo Leonardi, Matteo Barsuglia, and Raffaele Flaminio ³Università di Padova, Dipartimen

Accepted 1 March 2022

Backup

