

Newtonian Calibrator for Virgo (NCal) Principle, first results, plans for O4,...

ILANCE workshop April 15, 2022

Benoit Mours IPHC-Strasbourg

Newtonian calibrator for Virgo

Calibration: move a mirror by a known amount to calibrate the interferometer output

NCal basic principle

- Rotor made of two masses
 - Center of mass is not moving
 - The non linear Newtonian force creates the signal
 - Signal at twice the rotor frequency;
 - Signal proportional to $1/d^4$ effect \rightarrow Mirror to NCal distance is critical
- Expected benefits
 - Signal depends mainly on the rotor geometry, mass and position
 - Mass of the mirror cancels out
 - Correction for a real mirror geometry compared to point particle: around 1%
 - No aging effect of the signal
 - Simple interface with the detector
 - Could be moved from one mirror or ITF to another
- An old principle, tested during O2:
 - "First test of a Newtonian calibrator on an interferometric gravitational wave detector" CQG. 35, 235009, 2018

O3 setup

Ŧ

- Two NCals tested during O3 (build at LAPP)
 - At 1.27 and 1.95 m from the mirror \rightarrow measure the NCal-mirror distance

1269094100.00 : Mar 24 2020 14:08:02 UTC dt:2.00s nAv:10

O3 results

- Accurate FEM simulation
- Results published: <u>CQG 38, 075012</u>
 - "Newtonian calibrator tests during the Virgo O3 data taking"^{0.94}
- Probing h(t) up to 120 Hz (rotor @ 60 Hz)
- Same shape as PCal
- 3% amplitude offset between PCal and NCal
- Systematic uncertainties
 - At the level of the PCal uncertainties
 - Dominated by NCal-mirror distance

Parameter	uncertainty	formula	h_{rec}/h_{inj} near [%]	h_{rec}/h_{inj} far [%]
NCal to mirror distance d	$6.4 \mathrm{mm}$	$4\delta d/d$	2.02	1.31
NCal to mirror angle Φ	5.0/3.3 mrad	$\delta\Phi\sin\Phi$	0.28	0.19
NCal vertical position z	$1.3 \mathrm{~mm}$	$5/2(z/d)^2$	0.03	0.01
Rotor geometry	see table 1		0.53	0.53
Modeling method	see end of section 4		0.018	0.017
Mirror torque from NCal	see end of section 4		0.05	0.03
Total	quadratic sum		2.1	1.4

$$+\left(\frac{15}{8}\cos^{2}(\phi) - \frac{25}{24}\right)\left(\frac{x_{mir}}{d}\right)^{2} - \frac{25}{72}\left(\frac{b}{d}\right)^{2}\right]$$
(8)

- ▶ For 90° opening angle, the uncertainty goes to zero
- Rotor uncertainties are driven by:

O3 values

- Density
- Thickness
- Radius

Rotor parameter			NCal signal uncertainty		
name	value	uncertainty	formula	value (%)	
Density ρ (kg/m ³)	2805	5	$\delta ho / ho$	0.18	
Thickness $b \pmod{mm}$	74	0.2	$\delta b/b$	0.27	
$r_{ m max}~(m mm)$	95	0.1	$4\delta r_{ m max}/r_{ m max}$	0.42	
Total uncertainty	0.53				

NCal for O4

- O4 goals
 - Validate h(t) within 1% in the 10-200 Hz frequency range
 - Add a permanent NCal monitoring line
- Issues/challenges
 - Accurate knowledge of the NCal geometry/material
 - \rightarrow Metrology
 - ightarrow ightarrow Be able to swap NCals to easily compare/crosscheck them
 - Accurate knowledge of the mirror/NCal distance
 - Extract from measurements at several distances with known relative positions
 - \rightarrow Several NCals,
 - ightarrow ightarrow Know/survey of the relative NCal position
 - Do not introduce vibrations that may shortcut the signal or spoiled the sensitivity
 - \rightarrow Suspend the NCals
 - ightarrow ightarrow Reduce the mechanical vibration induce by the rotors
 - Reliability for long term operations

Improving the NCal rotor for O4

Simpler geometry

- Remove: the O3 external ring and central disk
- Make it thicker
- Benefit
 - Force x 2 compared to O3
 - Simplify the metrology and prediction
- Challenge: air motion \rightarrow friction
 - Go to 70 W motor
- Current test: 80 Hz rotor speed achieved
 - Will are building a three sectors rotor to probe h(t) up to 200 Hz

Improving the knowledge of the rotor: density

- Careful measurement of the material density
- Machine multiple blocs
- Mean density of 2808.41 ± 0.2 kg.m⁻³
 - for aluminum 7075 at 21.5 °C
- Relative uncertainty: 0.007% (0.18 % for O3)
- Value is batch specific: could change by 10⁻³
- Homogeneity check to better than 10⁻⁴

Weighted density per temperature and density normalized at 21.5 deg C

New NCal supports

Suspended NCal blocs

- Three slots, only one or two slots used
 - Accurate relative positioning
- Simple suspension:
 - rough filtering of NCal vibrations

Bottom reference

Fixed to the tower base

Relative position measurement

- Using linear sensors:
 - PS2PLIN-CE-M002-I-A0-L0000-ELSI20-05.
- Preliminary test results:
 - ± 6 mm range along x
 - Could tolerate ± 3 to 4 mm offsets along y and z

Sensitivity ¹ 10²⁰ 03 NCal_N 10s. O3 Mar 24, 2020 O4 high 10²⁰ 04 low 10²² 10²² 04 low 10²² 10²

Layout for O4 at North End

- I close NCal (red) for high frequency check
 - At I.3 m from the mirror
 - Same distance as O3 NCal_N
- 3 NCals (green) for mirror position control
 - Same mirror distance to reduce model uncertainties
 - At 1.7 m from the mirror
 - Attenuation factor vs O3 NCal_N: 2.9
- I Far NCal (blue) for permanent line
 - At 2.1 or 2.5 m from the mirror
 - Attenuation factor vs O3 NCal_N: 6.8/13.7
 - Could be installed on any side;
 - Around 30 Hz (in h(t)) ?
- ▶ \rightarrow Build 5+1 new NCals + positioning system

Knowing the NCal relative distance

- Use a mechanical template for installing the NCal support
- Survey their positions

North-South distance known to ± 1.3 mm

NCal foreseen operations during O4

- Dedicated commissioning shifts to:
 - Compare NCals strength by swapping NCals,
 - Extract mirror-NCal relative position by comparing NCal amplitudes
 - Check vertical position by moving the NCal along the vertical axis
 - Search for induced NCal noises, ...
- Weekly, calibration period:
 - Frequency scan and check of the mirror-NCal position
 - Should not take too much time (less than half an hour)
- Permanent line(s) for h(t) monitoring
 - Strong enough to get a meaningful result
 - Not to strong to avoid sidebands

O5 NCal plans

- Improve the accuracy from less than 1 % (O4 goal) to less than 0.5 %.
 - Improve the knowledge (and stability) of the NCal position
- Install an NCal system on the West End tower,
 - To be able to inject accurate calibration signals on both arms.
- Extend the frequency band cover up to at least 250 Hz (in h(t)).
 - This corresponds roughly to the frequency where 95 % of the BNS SNR is accumulated.
 - $\rightarrow \mathsf{Work} \text{ on new rotor}$
 - May need
 - To use denser material (could gain a factor 2.85 with stainless steel)
 - More powerful motor
 - Go to (partial vacuum)
 - Use magnetic bearing (also good to reduce the mechanical vibration
- Fix any issue that may be observed during O4

Summary

- We will have more and better NCals for O4
- The NCal systematic uncertainties might be smaller than for PCal
 ... could be our absolute calibration reference for O4
- Will keep improving it for O5