

KM3NeT calibration overview

Bouke Jung, Dorothea Samtleben on behalf of the KM3NeT collaboration

Calibration goals

Positions (<20cm)

 \rightarrow acoustic emitters / receivers

Orientations

 \rightarrow compass / tiltmeter

Timing (nanoseconds)

- \rightarrow Synchronization (White Rabbit)
- \rightarrow Light from nanobeacons / laser
- \rightarrow Light from potassium (⁴⁰K) decay
- \rightarrow Light from muons

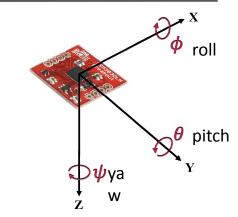
Efficiency / Gain / Angular acceptance

- \rightarrow Efficiency from light yield from potassium (⁴⁰K) decays
- \rightarrow Gain determination from Time over Threshold (ToT) distributions
- \rightarrow Angular acceptance via dark room measurements, ^{40K}K, muons

Water properties (scattering/absorption)

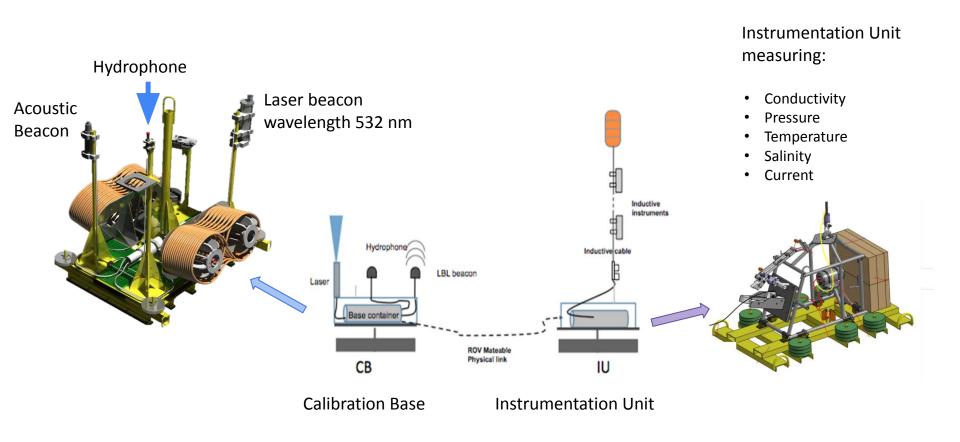
- \rightarrow Light from muons
- $(\rightarrow dedicated light source?)$

Calibration devices


Piezo sensor on DOM

Hydrophone on string bases

Acoustic Beacon an (some) string bases, (also autonomous ones) Compass chip Board mounted on Central Logic Board in DOM



Nanobeacon (LED) on DOM Wavelength 470nm

Calibration units

Acoustic systems

Acoustic emitters

- Autonomous acoustic beacons (around the string arrays)
- Triggered acoustic beacons (on some string bases and on Junction Boxes and on Calibration Unit)

Each beacon uses a characteristic emission pattern (frequency, waveform) 20-40kHz range

Acoustic receivers

- piezos (in all DOMs)
 - \rightarrow moving with DOMs
- hydrophones (on the base of each string, Junction Boxes and Calibration Unit)
 - \rightarrow fixed on Seafloor
 - \rightarrow high dynamic range, to be used also for Sea sciences (whale monitoring)

During data taking online filtering of receiver signals to identify emitter patterns

- → Recording 'time of arrival' and 'quality' for all beacon signatures, frequency ~10minutes => Position determination in minimizing differences of expected to measured times
 - => multidimensional problem (constraining emitter/receiver positions, emission times)

 \rightarrow Regularly also taking raw data (with selected receivers) for Sea Science evaluations (Whales, ...)

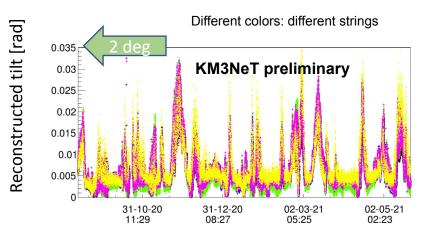
String tilts

What tilts more in the horizontal direction:

ORCA-string or tower of PISA?

String tilts

What tilts more in the horizontal direction:

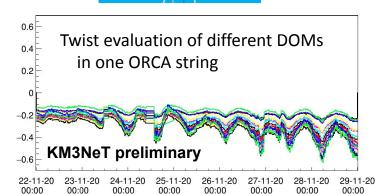

PISA tower

Wikipedia:

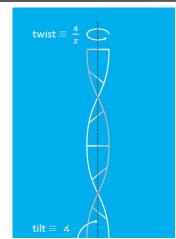
Height of Pisa tower is 55.86 metres. By 1990, tilt had reached 5.5 degrees. Structure was stabilized by remedial work between 1993 and 2001, which reduced tilt to 3.97 degrees.

KM3NeTpedia:

Height of ORCA string is 190 metres. Structure is stabilized by buoyancy of glass spheres. In 2020/21, tilt was less than 2 degrees


Orientation calibration

Compass chip on CLB of the DOM provides orientation information (yaw, pitch, roll)


Calibration of intrinsic offsets using the naked CLB before DOM integration

In-situ calibration of remaining offsets

Orientation description via quaternions: Tilt & Twist

twist [rad]

Time calibration

• Synchronization at nanosecond precision via White Rabbit technology White Rabbit: Development partners from industry & universities, CERN Ethernetbased network, subnanosecond synchronization

 \rightarrow Referenced to GPS clock

=> Talk Diego Real

• Time offsets have to be accounted for on different levels:

Intra-DOM time offsets (between PMTs on a DOM)

 \rightarrow determination via light signals from ⁴⁰K decays

Inter-DOM time offsets (between DOMs on a string)

 \rightarrow determination via light signals from (laser) / nanobeacons / muons

Inter-DU time offsets (between DUs)

 \rightarrow direct measurements of Round trip time

 \rightarrow .determination via light signals from lasers / muons

Inter-DOM time calibration

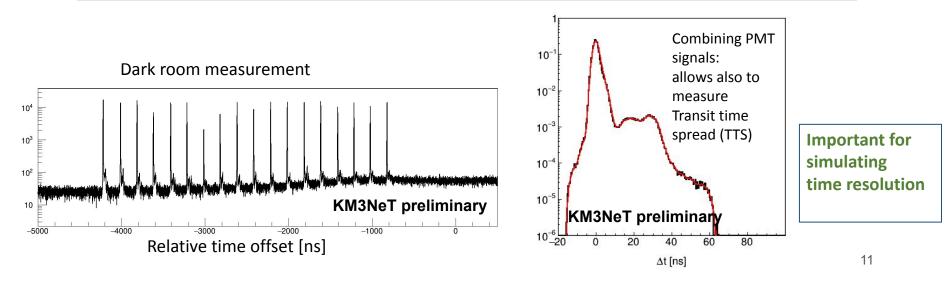
KM3NeT

In the dark room a laser signal is routed via a splitter to each DOM \rightarrow light signals used for DOM time offsets

In-situ the nanobeacons of the DOMs can be flashed (in staggered way)

- \rightarrow DOMs above flashing one measure correlated signals
- \rightarrow distance to DOMs known \square determination of relative time offset

Dark room measurement Setup at CPPM, Marseille



Inter-DOM time calibration

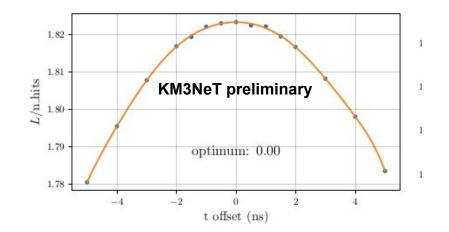
In the dark room a laser signal is routed via a splitter to each DOM \rightarrow peaks provide DOM time offsets

In-situ the nanobeacons of the DOMs can be flashed (in staggered way)

- \rightarrow DOMs above flashing one measure correlated signals
- \rightarrow distance to DOMs known \square determination of relative time offset

Inter-DU time calibration

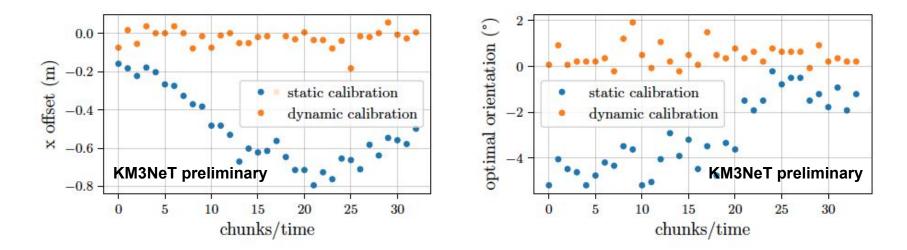
Muon calibration


1) Reconstruct muon tracks
2) Maximize quality

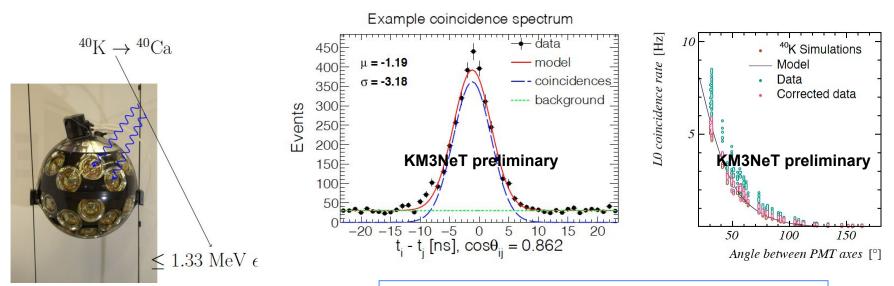
→ inter-DU timing (also possible inter-DOM time offsets, positions, rotations)

Position agreement with acoustic positioning in ORCA **<10cm**

Rotation agreement with orientation From compass information **<deg**

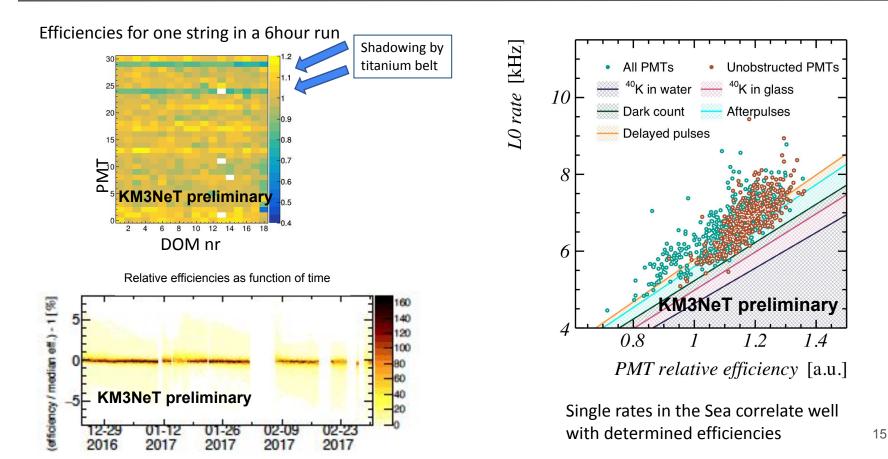

ORCA data (for one string)

Muon calibration cross-checks


Dynamic (time-dependent) position/orientation calibration confirmed with muon calibration

ORCA data

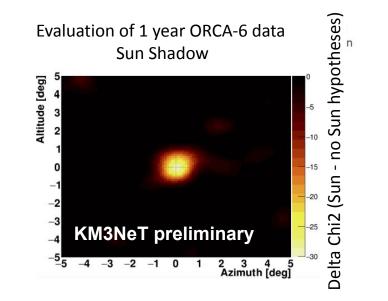
Intra-DOM time & efficiency calibration



Mean: Time offset difference
Width: Transit Time Spread (+intrinsic ⁴⁰K spread ~0.5ns)
Integral: Combined efficiency (distance dependent)

Global fit of distributions for all 465 PMT pairs of a DOM => for each PMT time offset & efficiency

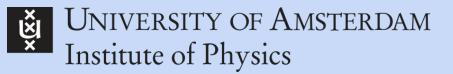
PMT efficiencies



No calibration source available for pointing confirmation

- => Use '**anti-signal**' in muons:
- Cosmic rays are blocked by Moon/Sun
- → check for 'hole' in atmospheric muon density in direction of Moon/Sun

Confirmation of detector positioning, timing and muon track reconstruction



Dedicated calibration systems set up for:

- Positioning
- Orientation calibration
- Timing calibration
- Gain and efficiency calibrations

Working and applied in darkrooms and sea right now

Thank you Questions?