Mechanical design and system integration: HK

Workshop on the evolution of advanced electronics and instrumentation for Water Cherenkov experiments

2022.Apr. I I

TAKEMOTO Yasuhiro ICRR, Univ. Tokyo

Hyper-Kamiokande Detector

	Super-K	Hyper-K
Depth	I 000m	650m
Volume (k-ton)		
ID + OD	50.0	258
ID	32.5	217
Fiducial	22.5 x8.3	188
	<u> </u>	
# Photo Sensors		
ID 50cm PMT	IIk	20k ~ 40k
ID multi-PMT	new	φ50cm ~1.3k
OD PMT	φ20cm~1.9k	φ3" ~8.5k

ID 50cm PMT

ID multi-PMT

OD 3" PMT w/ WLS

used in SK ~2019

Box & Line PMT: new high performance PMT

- (Q.E.+C.E), Time Res., SPE P/V ratio = x2 of SK
- Low dark rate = $4kHz = \sim SK \Rightarrow LowE$ sensitivity

- 300PMT delivery/month
- \checkmark ~3300PMT by Mar. on schedule
 - 100% inspection for initial 700PMT
 - 10% inspection after that
- ☐ Long-term performance test on going

- Chain Implosion Prevention by
 - Acrylic Cover
 - SS Cover
- □ Under Evaluation

50cmφ mPMT

- 19x3" PMTs: x2 time resolution to 50cm PMT
- Sensitivity for incident angle
- Calibration of 50cm PMT
 - ⇒ Reduction of Syst. Error even w/ less PMTs.

High event reconstruction w/ 50cm PMT

- Separation of multi-ring event
 - ⇒ Proton-decay, neutrino oscillation
- **BG** reduction near detector wall
 - ⇒ Larger statistic w/ larger FV

DAQ/FE electronics Topology

DAQ Connection

SK: $40m \phi x 40m$

(just) Longer Coax.

- worse discrimination
- · worse time resolution
- ⇒ Thicker & Longer Coax. ?

 $\underline{\text{Merit}} = \text{RG58}$ can be adapted for shorter coax cable

- → Good balance of cost
- → Smaller volume & mass of cables
- → Maximized detector volume

<u>Challenge</u> = 10 years un-replaceable condition during DAQ each components are required to have <0.1%/year failure rate

Difference of underwater components (to KM3Net, IceCube, etc)

- · Shallower, but not so ⇒ customized low-cost components
- Much more channels \Rightarrow JUNO-SPMT is our *Gigantum*

Baseline Idea of Underwater Connection

ID50cm (+OD) PMT Underwater Vessel

Underwater Electronics Containing Vessel

- Communication Module: 200x200mm
- **Digitizer Modules:** 210x300mm
- HV Module: EuroCard 6U (233) x300mm
- 200x200mm Low Voltage Module:

Vessel needs to contain 5 PCBs of 230x300mm Considering Cabling, $300 \text{mm} \phi \times 400 \text{mm}$

<u>Ist Idea</u>

- SUS304
- ~48kg
- Larger Safe Factor
- Pressure-proof ✓ Double O-rings √ I0+bar & I month

2nd Idea

- SUS316L
- ~31kg
- Lighter to seek handiness and cost effectiveness
- Pressure-proof ✓ Double O-rings √ I 0 bar & 2 days

Cable Entry Flange

- PMT cables : x24 (RG58-mod, RG174-mod) (Signal , HV)
 - Communication Cable : x1 (12-FO, 2-metal)
 (Data, LV Power)

PMT Cable Feedthrough (ID 50cm)

Characteristics

- Connection
 - > Underwater Connector (1)
 - ◆ Connection btw. PMT & Vessel for ease of connection works for 24 cables
 - > 4ch Panel Mount Feedthrough ②
 - Reduction of connection for better waterproof and connection work
- Waterproof
 - Waterproof Cable 3
 - ♦ Water-blocking filler
 - Double O-rings for each connection
- Electrical
 - > HV-tolerance enhanced cables and connectors
- Environmental Compatibility to UPW
 - > Polyethylene, SS316, FKM, Silicone

- Validation : On-going
 - >

 Checking ease of connection
 - > 🗆 waterproof of feedthrough @ I Obar
 - ➤ ✓ waterproof of cable @ I Obar Δ
 water-blocking is confirmed,
 and trying to enhancing..
 - > ☑ short HV tolerance: 3.3kVdc I 000sec ○
 - > □ long HV tolerance: 3.3kVdc I month
 - >

 RF characteristics
 - ightharpoonup soak test : some had elution, replacing... \triangle
 - > 🗸 cable radon emanation : ~PMT cable O

Communication + Power Cable Assembly

Vessel

Characteristics

- Connection
 - > Panel Mount Connector ①
 - ◆ Connection btw. EHut & Vessel for only I cable.
 - **♦** Cost reduction by component reduction
 - Composite Cable + Plug ②
- Waterproof
 - Double water-block component for each connection
 - > 12bar waterproof
- Electrical
 - > Low reflection loss fiber
- Environmental Compatibility to UPW
 - > SUS316. FKM

- Validation : On-going
 - > Checking ease of connection
 - ➤ ✓ waterproof of feedthrough @ I2bar ⇒ ○
 I.5MPa
 - > \(\text{reflection loss} \)
 - ♦ ☑ before connector assembly ⇒ ○~SPC
 - ♦ ☑ before connector assembly⇒△~FC
 - ◆ ☑ BERT
 - ➤ □ insertion loss
 - → □ insertion loss at 10bar
 - ➤ □ soak Test
 - ¬ Cable Radon Emanation
 - → □ cable Gas Permeation

Electronics Holder & Heat Dissipation Design

·Lid outside: 15℃

·Heat on HV: 25W

·Heat other: 50W

total :75W

Max. Temp @ Holder = 31.6°C

Temperature for FIT

Chip: 45℃

Ambient: 25°C seems possible.

Realistic test with Dummy PCB with heat sources is planned.

Electronics Holder & Cabling (+OD PMT)

☑ Cable Guide to keep distance btw RG58 to suppress cross-talk

- □ power/digital lines are put away from Coax.
- **☑** reflected on PCB design.
- ☐ assembly test with dummy PCBs
- □ EMC and cross-talk check by integration test

Summary

- Hyper-Kamiokande Experiment decided to utilize
 - > FE electronics near PMT at most 71m-deep ultra-pure water
 - > Underwater electronics container
- Underwater component consists
 - > Electronics Containing Vessel
 - > PMT cable feedthrough assembly
 - > Communication cable connector assembly
 - > Related design including heat dissipation, cabling
- Milestones of R&D
 - '22-2Q: Component R&D results & collaboration review
 - : Integration Test
 - > '24-2Q: Start mass production
 - > '25-4Q: Start Installation
 - '27-3Q: Start Observation
- Installation design is also considered
 - > 4-fold interleaving connection to minimize continuous dead channels in case a vessel failure as a baseline design.