

Detector & Physics Connections in IceCube

Shigeru Yoshida International Center for Hadron Astrophysics Chiba University

Radiations from Universe

Radiations from Universe

Multi-Messenger framework

What we know about TeV-PeV v sky

Mostly coming from extragalactic space

Their arrival directions are (nearly) isotropic

 $E^{2} \Phi_{v \text{ all flavor sum}} \sim 10^{7} \text{ GeV/cm}^{2} \text{ s sr} \quad \text{in TeV} \\ \sim 10^{8} \text{ GeV/cm}^{2} \text{ s sr} \quad \text{in 100 TeV-PeV}$

Still statistically allows a single $E^{-\alpha}$ spectrum but a weak tension exists

The big picture

The TeV-PeV ν energy flux is comparable to UHECR flux

CHIBA

UNIVERSITY

The Grand Unified Theory?

UHECRs $\leftarrow \rightarrow$ TeV-PeV v all shares the same origin?

pp framework – jetted AGN in clusters of galaxies

 $p\gamma$ framework – a generic model applicable to GRB/TDE/Blazar

Fang & Murase Nature Physics 14 196-198 (2018)

Yoshida & Murase PRD 102 083023 (2020)

This scenario was more or less predicted. CHIBA Waxman – Bahcall bound

Waxman & Bahcall PRD (1999)

1st order estimate of the possible ultra-high energy v flux induced by the cosmic ray energetics

 $I_{\rm max} \approx \underbrace{0.25\xi_Z t_H \frac{c}{4\pi} E_{CR}^2 \frac{d\dot{N}_{CR}}{dE_{CR}}}_{\bullet} \approx 1.5 \times 10^{-8}\xi_Z \text{GeV}\,\text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$

UHE Cosmic Ray Energy Density ~ 10⁴⁴ erg Mpc⁻³ yr⁻¹

Cosmic Evolution ~ from 3 to 8 : Cosmic Ray Emissions may be more active in the distant universe

a muon neutrino carries 1/4 of pion energies

This scenario was more or less predicted. CHIBA Waxman – Bahcall bound

IceCube Preliminary Design Report (2001)

A standard technique to search for high energy neutrinos of astrophysical origin is to look for upgoing muons induced by ν_{μ} that have penetrated the Earth. The signal is given by the convolution

Signal ~ Area $\otimes R_{\mu} N_A \otimes \sigma_{\nu} \otimes \phi_{\nu},$ (1)

where R_{μ} is the muon range in g/cm² and N_A is Avogadro's number. The range and cross

a neutrino event rate of $f \times 30$ events/km²/yr

(also by T.K. Gaisser astro-ph/9707283)

 $f = 0.3 \rightarrow$ the case of the Waxman-Bacall 1st order estimate

This scenario was more or less predicted. CHIBA

slide @ 2003!

IceCube Neutrino Observatory

Kalia AUSTRALIA University of Adelaide

BELGIUM

Université libre de Bruxelles Universiteit Gent Vrije Universiteit Brussel

CANADA

SNOLAB University of Alberta-Edmonton

DENMARK

University of Copenhagen

GERMANY

FUNDING AGENCIES

Deutsches Elektronen-Synchrotron ECAP, Universität Erlangen-Nürnberg Humboldt–Universität zu Berlin Ruhr-Universität Bochum **RWTH** Aachen University Technische Universität Dortmund Technische Universität München Universität Mainz Universität Wuppertal Westfälische Wilhelms-Universität Münster

THE ICECUBE COLLABORATION

JAPAN **Chiba University**

NEW ZEALAND University of Canterbury

REPUBLIC OF KOREA Sungkyunkwan University

SWEDEN Stockholms Universitet

Uppsala Universitet

+ SWITZERLAND Université de Genève

NE UNITED KINGDOM University of Oxford

UNITED STATES

Clark Atlanta University Drexel University Georgia Institute of Technology Lawrence Berkeley National Lab Marquette University Massachusetts Institute of Technology Michigan State University Ohio State University Pennsylvania State University South Dakota School of Mines and Technology

Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of Delaware University of Kansas University of Maryland University of Rochester University of Texas at Arlington

University of Wisconsin–Madison University of Wisconsin-River Falls Yale University

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen)

Federal Ministry of Education and Research (BMBF) Japan Society for the Promotion of Science (JSPS) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY)

Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat

The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

Constructions2005-2011

ICECUBE

The IceCube Lab Beer Can

The IceCube Detector

Optical Detector Module for IceCube CHIBA UNIVERSITY

DOM breakdown

Glass sphere: Nautillus

Mu metal magnetic shield

Characterization of DOM

in Japan for 2004-2009

 $4\pi CE$ scanning

QE × CE Absolute calibration

Mapping photon detection efficiencies

@365nm

IceCube Upgrade

0 2.4m

The next generation Cherenkov detector modules **D-Egg** developed and fabricated in Japan

278 pcs will be deployed in 2024/25

The DOM for the present IceCube

D-Egg

Summary

IceCube Neutrino Observatory had been designed to have enough volume to discover TeV-PeV energy cosmic neutrinos