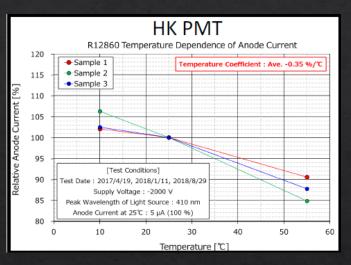


Calibration in Hyper-Kamiokande

Neil McCauley

University of Liverpool

Workshop on the Evolution of Advanced Electronics and Instrumentation for Water Cherenkov Experiments

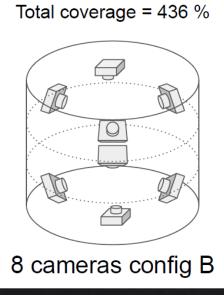


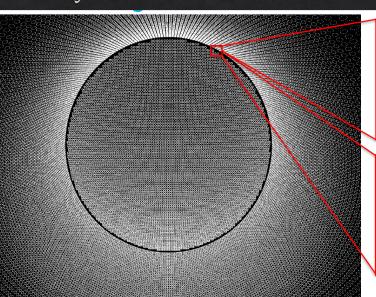

Calibration Strategy

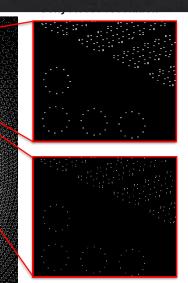
- Improved Calibration is essential to meet the systematic goals of the experimental programme
 - ♦ Existing detector systematics must be reduced
- ♦ Need to understand underlying detector parameters and high level response
 - ♦ Detector model
 - Water Quality: Scattering and Absorption
 - * PMT Response: Timing, Efficiency, Gain, Angular Response
 - ♦ Geometry
 - ♦ Detector Response
 - & Energy, Position, Angle, Particle ID : Scale and Resolution
 - ♦ High and Low Energy Sources
 - Calibration Sources and Control Samples

PMT Pre-calibration

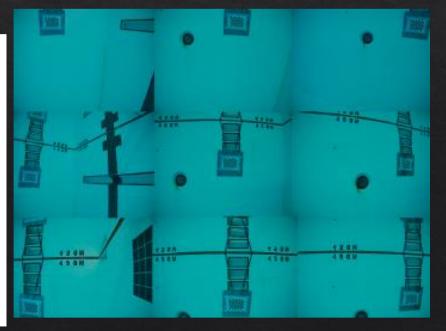
- PMT Pre-calibration programme under development
- ♦ Needs to measure
 - ♦ Gain
 - ♦ Efficiency
 - ♦ Angular response
 - \diamond Timing
 - ♦ After pulsing
 - ♦ Linearity
- ♦ Consider effect of
 - ♦ Voltage
 - ♦ Temperature
 - ♦ Magnetic field
- Extensive Pre-calibration programme planned in Japan with extremely detailed measurements in PTF at Triumf

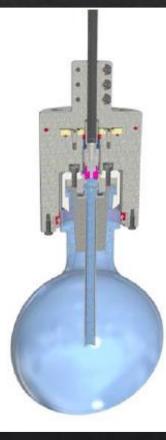






Photogrammetry

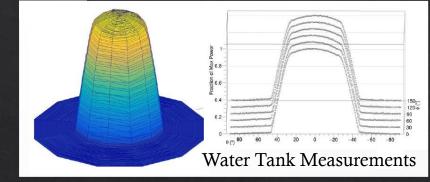

- Photogrammetry System to Determine Location of Detector Elements
 - $\Leftrightarrow \ \ Design \rightarrow As \ Built$
 - ♦ Impact of Stresses and Strains, Buoyancy
 - ♦ PMTs, Calibration Source locations
- ♦ Inbuilt Camera System and ROV
- ♦ Illumination from LED system inside mPMTs

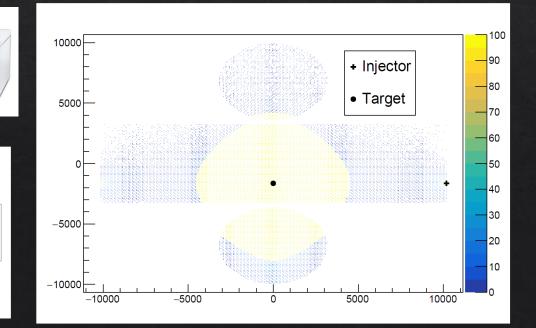


Light Sources

- Light Sources are used to measure the underlying detector parameters
 - ♦ Water Scattering and Absorption
 - ♦ PMT Properties
- ♦ Key Features
 - ♦ Well controlled light pulse
 - ♦ Shaped light pulse inside detector depending on purpose
- Light Injection and Deployable Light Sources
- ♦ Laser and LED Light Sources

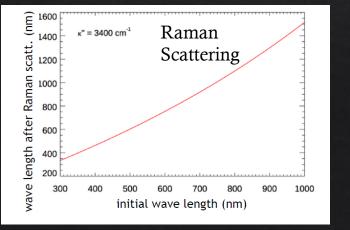
Deployable Diffuser Ball

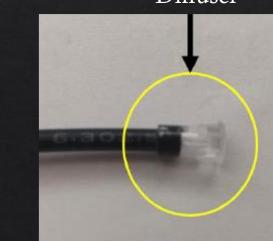



Light Injection System

٠ŀ

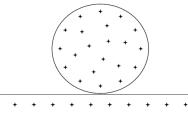
٠<u>+</u>+

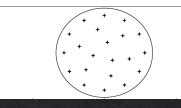

- Fibre Coupled Light Injection System
- Dual Injectors
 - ♦ Diffusers
 - ♦ 40° Half Angle Uniform Source
 - $\diamond~$ Illuminate large fraction of the PMTs
 - ♦ Collimators
 - ♦ 3.5° Beam
 - Dedicated for scattering measurements
- ♦ Light Source
 - ♦ Multi Wavelength Fibre Coupled Laser
 - Commercial Fibre Switches to distribute pules
- Requires graded index fibre to minimise pulse dispersion

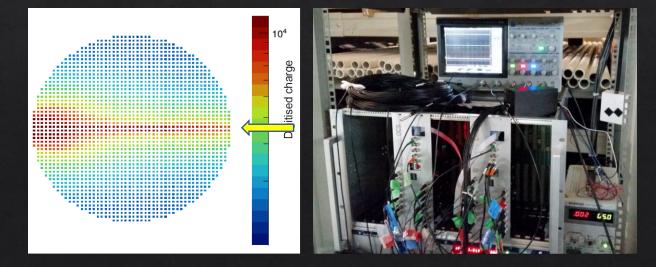


Light Injectors in mPMTs

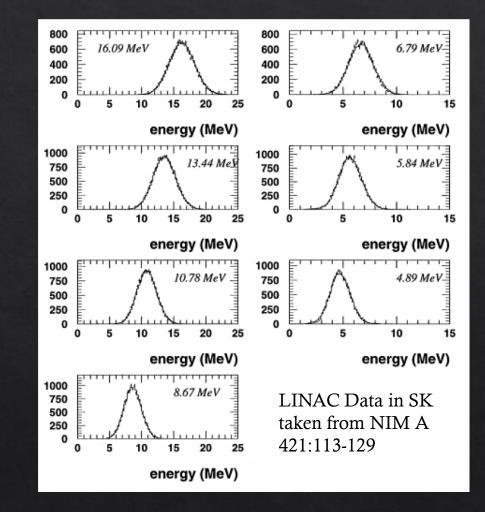
- ♦ mPMTs are important devices for calibration
 - \diamond They can provide key information for analysis
 - ♦ They can also house calibration devices
- ♦ LED light sources for Photogrammetry System
- Pulsed LED source for calibration
- ♦ One option to include 300 nm LEDs
 - ♦ Measure Raman scattering as only sensitive to scattered light after wavelength shifting
 - ♦ Improvement to optical model, monitored for the first time

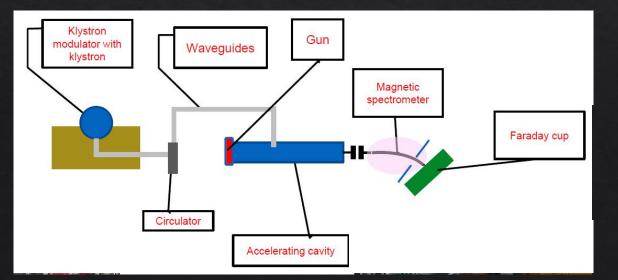



Diffuser

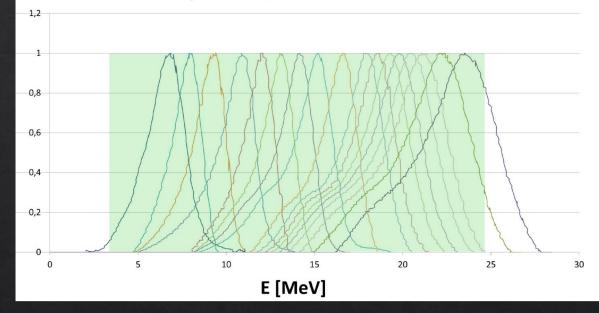

Outer Detector System

- OD Light Injection System to measure PMT performance and OD optics
- ♦ Diffusers as in ID to distribute light
- Collimators allow measurements of OD Optics
 - ♦ Water Quality and Tyvek performance
 - ♦ Collimators installed parallel to OD walls
- Pulsed LED light sources
 - ♦ ID Laser source for collimator channels


		,						*		+				*		*		*		*		•						•			
	+		+		+		+		+		+		+		+		+		+		+		+		+		+		+		
+		+		+		+		+		+		+		+		+		+		+		+		+		+		+		+	
	+		+		+		+		+		+		+		+		+		+		+		+		+		+		+		
+		+		+		+		+		+		+		+		+		+		+		+		+		+		+		+	

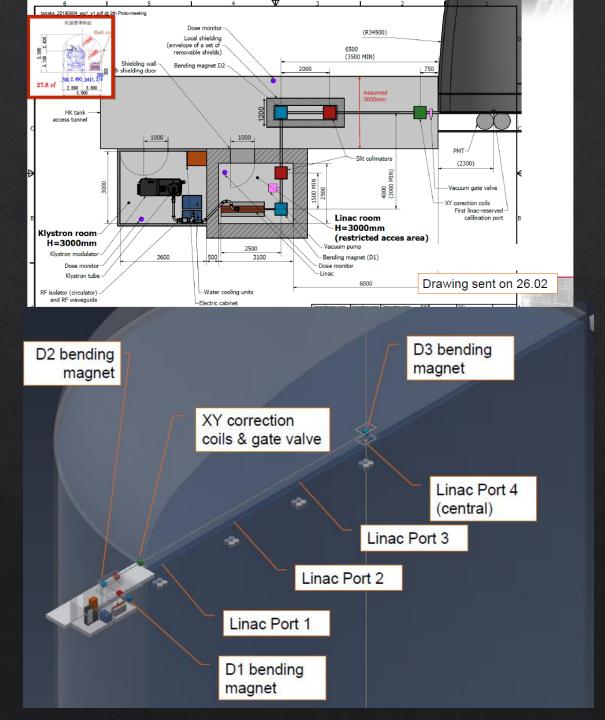

LINAC

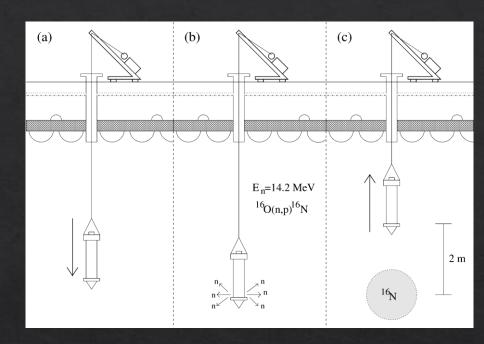
- While at high energy we use control samples to measure detector response, at low energy we use sources.
- The LINAC provides full coverage of the energy range to measure energy response of detector
 - Essential to meet systematic requirements for solar upturn search
- Angular Resolution is also obtained from LINAC data
- Other sources needed to complete map across detector and angular variations

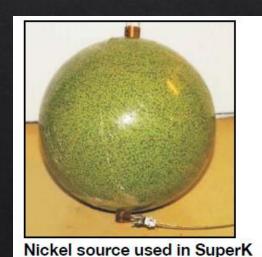


Electron LINAC Testing

- ♦ LINAC setup at NCBJ
- Measurement of wideband output for different LINAC settings
 - ♦ Confirms coverage from 3-24 MeV
 - ♦ Detailed beam characterisations underway
- Narrow beam energy through beam transport system


Normalized linac spectra measured on magnetic spectrometer for different RF and gun parameters. RF power: 3..5MW, Gun emission 70..450mA


Beam Transport System


- ♦ Beam transport system must
 - \diamond Select very narrow energy
 - ♦ Attenuate to 1 electron per event
- Horizontal alignment selected with two right angle turns
- ♦ Double tower system
 - Allows running at edge of fiducial volume with smaller tower
- ♦ Mechanical tolerances of beam pipe critical
 - ♦ Bending
 - ♦ Oscillation

Radioactive Sources

- ♦ Use DT generator to make ¹⁶N
 - $\Rightarrow \beta\gamma$ source with well understood spectrum
 - ♦ Used to measure energy response across detector and in all directions
- ♦ NiCf Source
 - ♦ Neutron capture on ⁵⁸Ni
 - $\diamond ~~9$ MeV gamma cascade
 - ♦ Monitoring and uniform Cherenkov light source
- ♦ AmBe BGO
 - ♦ Tagged neutron source
 - ♦ Use BGO crystal to detect 4 MeV photon

(https://arxiv.org/abs/1307.0162)

Summary

- Hyper-Kamiokande will deploy a number of calibration sources to fully understand the detector
- Detector Model
 - ♦ Pre-calibration
 - ♦ Photogrammetry
 - ♦ Light Injection
- Physics Sources
 - ♦ LINAC
 - \Leftrightarrow DT and Radioactive Sources