

Detectors and Physics: Hyper-Kamiokande

Masaki Ishitsuka (Tokyo University of Science) for the Hyper-Kamiokande Collaboration

Workshop on the evolution of advanced electronics and instrumentation for Water Cherenkov experiments

April 11, 2022

Water Cherenkov detector

- Cherenkov ring
 - > Particle identification (>99% efficiency for μ/e separation)
 - Momentum reconstruction (energy and direction)
- Scalable to larger mass \Rightarrow rare process (proton decay search and neutrino observation)
- Well established technology \rightarrow next slide

Three generations of water Cherenkov detectors in Kamioka

Kamiokande (1983-1996)

- Atmospheric and solar neutrino "anomaly"
- Supernova 1987A

Birth of neutrino astrophysics

Super-Kamiokande (1996 - ongoing)

- Proton decay: world best-limit
- Neutrino oscillation (atm/solar/LBL)
 ➤ All mixing angles and Δm²s

Discovery of neutrino oscillations

Hyper-Kamiokande (start operation in 2027)

- Extended search for proton decay
- Precision measurement of neutrino oscillation including CPV and MO
- Neutrino astrophysics

Explore new physics

Experimental setup of Hyper-Kamiokande

	Super-K	Hyper-K
Overburden	1000 m	650 m
ID PMT	20-inch	20-inch (HQE+B&L) multi-PMT (3-inch ×19)
Total/Fiducial vol.	50 / 22.5 kton	260 / 188 kton

× 8.4 fiducial volume (SK → HK)
× 2.6 beam power (J-PARC upgrade)
→ More than 20 times statistics

Physics in Hyper-Kamiokande

- Hyper-Kamiokande is a multi-purpose detector with the capabilities
 - Real time measurement of vertex, direction, energy and particles types
 - Large fiducial mass with low radioactive background
 - Wide dynamic range to observe neutrinos from MeV to TeV energy scale

+ new physics cases?

Long-baseline measurement with J-PARC neutrino beam Experimental setup

- 2.5° off-axis beam peaked at 0.6 GeV (oscillation maximum at 295km)
 - > Major component is QE: E_{ν} determined from outgoing lepton \leftrightarrow Suppress non-QE/NC contamination by selecting single-ring event
- Measures CP violation in neutrino sector from comparison of $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

- A few % statistical uncertainties after 10 years operation with >1000 ν_e and $\bar{\nu}_e$ signals
- Projected sensitivity based on T2K systematics uncertainties + improvements for HK

Strategy of oscillation measurement at Hyper-Kamiokande

Combination of long-baseline and atmospheric neutrino observations ⇒ Resolve parameters degeneracy

Atmospheric neutrino: sensitive to mass ordering by Earth's matter effects
 → Constraints on mass ordering enhance sensitivity to CP violation by long-baseline

Precision measurement of neutrino oscillations

1.3MW, 10 years

- Good opportunity to make discovery of *CP* violation at >5 σ
- Measurement of δ_{CP}

> ~20° for $\delta_{cp} = -90^{\circ} / ~~7^{\circ}$ for $\delta_{cp} = 0^{\circ}$

- Reduction of systematic uncertainty has sizable impact
 - Upgrade of ND280 + 1kton scale water Cherenkov (IWCD)
 - ➢ Aim to suppress detector error below 1%

Neutrino astrophysics

- Observation of ~ 10 MeV neutrinos with the time, energy and direction
 - > Unique role in multi-messenger observation
 - Sensitivities depend on the energy thresholds
- Solar neutrinos (~130/day): up-turn at vacuum-MSW transition region, D/N, hep ν
- Supernova burst (~50k/burst): explosion mechanism, BH/NS formation, alert with 1° pointing
- Supernova Relic Neutrino (~10/yr): stellar collapse, nucleosynthesis and history of the universe

• Extend proton decay search by one order of magnitude beyond the current limits

Accelerator

• One possible approach to reach GUT energy scale

Proton decay search Large underground detector

GUT

Requirements for the detector/electronics/calibration

• Trigger

- Peak event rate reaches 50kHz for SN at galactic center
- Detection of delayed signals
 - Michel electrons $\sim 2\mu s$ after muons
 - Neutron tagging: 2.2 MeV γ -ray ~200 μ s after neutrino interactions
- Energy scale
 - Wide dynamic range from single p.e. (a few MeV) to >1000 p.e. (>100 GeV)
 - GeV-scale (atmospheric/LBL/proton decay):
 - ~2% uncertainty in SK \rightarrow Aim for < 1% uncertainty at HK to realize precision measurement
 - MeV-scale (solar/supernova)
 - $\sim 0.5\%$ uncertainty in SK with LINAC
 - Major source due to position dependence (uniformity in detector)
 → Important for Day/Night asymmetry measurement
- Timing
 - \sim 1ns resolution required for vertex position reconstruction (\sim 20 cm)
 - \rightarrow BG rejection (spallation, external γ from rock/PMT), control of fiducial volume
- Long term stability
 - Stable for >10 years without repair (dead channel, detector response)

Detector R&D for Hyper-Kamiokande

Outer detector: PMT+WLS plate

ID mockup

Underwater electronics:

Case design and feedthrough

Multi-PMT module:

(ref. KM3NeT)

PMT cover

Box&Line PMT in Super-K

Hyper-Kamiokande schedule

Summary

- Hyper-Kamiokande is currently under construction and will begin operation in 2027
- Hyper-Kamiokande is a multi-purpose detector aiming for various physics in wide energy range
 - ◆ Low energy (MeV scale)
 - Unique contribution to astrophysics by the neutrino observations (solar, SN burst, SRN)
 - ◆ High energy (GeV scale)
 - Reveal full picture of neutrino oscillations including CP violation and mass ordering
 - Unprecedented high statistics neutrino data will be available with upgraded J-PARC neutrino beam
 - Search for proton decay by one order of magnitude beyond the current limits
 - ◆ Very-high energy (>100 GeV)
 - Neutrinos from astrophysical sources including as yet unobserved dark matter annihilation

⇒ These will be realized by a high performance detector and the detector calibration

- > 50kHz trigger rate Detection of delayed signals ~1ns timing resolution
- Wide dynamic range from 1 p.e. to >1000 p.e. Stability for >10 years
- < 1% uncertainty on the energy scale \cdot < 0.5% uniformity in detector