(B)SM and the LHC

I. Schienbein U Grenoble Alpes/LPSC Grenoble

Summer School in Particle and Astroparticle physics Annecy-le-Vieux, 19-26 July 2022

III. The Standard Model of particle physics (2nd round)

• Introduce Fields & Symmetries

- Introduce Fields & Symmetries
- Construct a local Lagrangian density

- Introduce Fields & Symmetries
- Construct a local Lagrangian density
- Describe Observables
 - How to measure them?
 - How to calculate them?

- Introduce Fields & Symmetries
- Construct a local Lagrangian density
- Describe Observables
 - How to measure them?
 - How to calculate them?
- Falsify: Compare theory with data

Fields & Symmetries

Matter content of the Standard Model (including the antiparticles)

MATTER			HIGGS	GAUGE		
$Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$({f 3},{f 2})_{1/3}$	$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$({f 1},{f 2})_{{}_{-1}}$	$H = \begin{pmatrix} h^+ \\ h^0 \end{pmatrix} (1, 2)_1$	A	$(1,1)_0$
u_R^c	$(\overline{3},1)_{-4/3}$	e_R^c	$(1,1)$ $_2$		W	$({f 1},{f 3})_0$
d_R^c	$(\overline{f 3}, f 1)_{2/3}$	$ u_R^c$	$(1,1)_{0}$		G	$({f 8},{f 1})_0$

$Q^c = \begin{pmatrix} u_L^c \\ \\ d_L^c \end{pmatrix}$	$(\overline{3},\overline{2})_{-1/3}$	$L^{c} = \begin{pmatrix} \nu_{L}^{c} \\ e_{L}^{c} \end{pmatrix}$	$(1,\overline{2})_{1}$	$H = \begin{pmatrix} h^- \\ h^0 \end{pmatrix} (1, \overline{2})_{-1}$		$(1,1)_0$
u_R	$(3,1)$ $_{4/3}$	e_R	$({f 1},{f 1})_{-2}$		W	$({f 1},{f 3})_0$
d_R	$({f 3},{f 1})_{-2/3}$	$ u_R $	$(1,1)_{0}$		G	$({f 8},{f 1})_0$

- Left-handed up quark **u**L:
 - LH Weyl fermion: u_{Lα}~(1/2,0) of so(1,3)
 - a color triplet: $u_{Li} \sim 3$ of $SU(3)_c$
 - Indices: (UL)_{i α} with i=1,2,3 and α =1,2
- Similarly, left-handed down quark dL
- \mathbf{u}_{L} and \mathbf{d}_{L} components of a $SU(2)_{L}$ doublet: $\mathbf{Q}_{\beta} = (\mathbf{u}_{L}, \mathbf{d}_{L}) \sim 2$
 - Q carries a hypercharge $I/3: Q \sim (3,2)_{I/3}$ of $SU(3)_c \times SU(2)_L \times U(1)_Y$
 - Indices: $Q_{\beta i \alpha}$ with $\beta = 1,2$; i = 1,2,3 and $\alpha = 1,2$

- There are three generations: Q_k , k = 1,2,3
- Lot's of indices: $Q_{k\beta i\alpha}(x)$
- We know how the indices β,i,α transform under symmetry operations (i.e., which representations we have to use for the generators)

- Right-handed up quark UR:
 - RH Weyl fermion: u_{Rα}.~(0,1/2) of so(1,3)
 - a color triplet: $U_{Ri} \sim 3$ of $SU(3)_c$
 - a singlet of $SU(2)_L: \mathbf{u}_R \sim \mathbf{I}$ (no index needed)
 - UR carries hypercharge 4/3: UR ~ (3,1)4/3
 - Indices: $(\mathbf{u}_{\mathbf{R}})_{i\alpha}$. with i=1,2,3 and α .=1,2 (Note the dot)
 - Note that u_R^c ~ (3*, 1)-4/3

- Again there are three generations: U_{Rk} , k = 1,2,3
- Lot's of indices: URkiα.(X)
- And so on for the other fields ...

Exercise

• How many fermions are there in one generation?

Exercise

 How many fermions are there in one generation? $u_L: 3, d_L: 3, u_R: 3, d_R: 3$ $\nu_L: 1, e_L: 1, e_R: 1, (\nu_R: 1)$

15 (+1) fermions and 15 (+1) anti-fermions

Terms for the Lagrangian

How to build Lorentz scalars? Scalar field (like the Higgs)

Real field ϕ $\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{2}m^{2}\phi^{2}$ Complex field $\phi = \frac{1}{\sqrt{2}}(\varphi_{1} + i\varphi_{2})$ $\partial_{\mu}\phi^{*}\partial^{\mu}\phi - m^{2}\phi^{*}\phi$

Note: The mass dimension of each term in the Lagrangian has to be 4!

How to build Lorentz scalars? Fermions (spin 1/2)

Left-handed Weyl spinor

 $i\psi_L^\dagger \overline{\sigma}^\mu \partial_\mu \psi_L$

Right-handed Weyl spinor

 $i\psi_R^\dagger \sigma^\mu \partial_\mu \psi_R$

Mass term mixes left and right

 $i\psi_L^{\dagger}\overline{\sigma}^{\mu}\partial_{\mu}\psi_L + i\psi_R^{\dagger}\sigma^{\mu}\partial_{\mu}\psi_R - m(\psi_L^{\dagger}\psi_R + \psi_R^{\dagger}\psi_L)$

$$\sigma^{\mu} = (1, \sigma^{i})$$
$$\bar{\sigma}^{\mu} = (1, -\sigma^{i})$$

1

Dirac spinor in chiral basis

$$\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} \qquad i\overline{\Psi}\gamma^{\mu}\partial_{\mu}\Psi - m\overline{\Psi}\Psi \quad \text{with} \quad \overline{\Psi} = \Psi^{\dagger}\gamma^0 \quad \text{and} \quad \gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \overline{\sigma}^{\mu} & 0 \end{pmatrix}$$

How to build Lorentz scalars? Fermions (spin 1/2)

Left-handed Weyl spinor

 $i\psi_L^\dagger \overline{\sigma}^\mu \partial_\mu \psi_L$

Right-handed Weyl spinor

 $i\psi_R^\dagger \sigma^\mu \partial_\mu \psi_R$

Mass term mixes left and right

 $i\psi_L^{\dagger}\overline{\sigma}^{\mu}\partial_{\mu}\psi_L + i\psi_R^{\dagger}\sigma^{\mu}\partial_{\mu}\psi_R - m(\psi_L^{\dagger}\psi_R + \psi_R^{\dagger}\psi_L)$

 $\sigma^{\mu} = (1, \sigma^{i})$ $\bar{\sigma}^{\mu} = (1, -\sigma^{i})$

Note: Lorentz-invariance ⇒ mass terms 'marry' left and right chiral

fermions

Dirac spinor in chiral basis

$$\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} \qquad i\overline{\Psi}\gamma^{\mu}\partial_{\mu}\Psi - m\overline{\Psi}\Psi \quad \text{with} \quad \overline{\Psi} = \Psi^{\dagger}\gamma^0 \quad \text{and} \quad \gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \overline{\sigma}^{\mu} & 0 \end{pmatrix}$$

How to build Lorentz scalars? Vector boson (spin 1)

U(1) gauge boson ("Photon") $-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m^{2}A_{\mu}A^{\mu} \quad \text{where} \quad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ Mass term allowed by Lorentz invariance; forbidden by gauge invariance

In principle, there is a second invariant

$$-\frac{1}{4}F_{\mu\nu}\widetilde{F}^{\mu\nu} \quad \text{with} \quad \widetilde{F}_{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}$$

 $F\tilde{F}\propto \vec{E}\cdot \vec{B}$

Violates Parity, Time reversal, and CP symmetry; prop. to a total divergence → doesn't contribute in QED

BUT strong CP problem in QCD

Exercise

- Why does each term in the Lagrangian has a mass dimension 4?
- What are the mass dimensions of the scalars, fermions and vector fields?

Exercise

- Why does each term in the Lagrangian has a mass dimension 4?
- What are the mass dimensions of the scalars, fermions and vector fields?

$$S = \int d^4 \mathscr{L}, [S] = [\hbar] = 1$$

$$[d^4x] = \text{Length}^4 = \text{Mass}^{-4}$$

$$\begin{split} & [\mathscr{L}] = \mathrm{Mass}^{4} \\ & \mathscr{L} \supset -\frac{1}{2}m_{\phi}^{2}\phi^{2} \Rightarrow [\phi] = \mathrm{Mass} \\ & \mathscr{L} \supset -m_{\psi}\psi_{L}^{\dagger}\psi_{R} \Rightarrow [\psi_{L,R}] = \mathrm{Mass}^{3/2} \\ & \mathscr{L} \supset -\frac{1}{2}m_{A}^{2}A_{\mu}A^{\mu} \Rightarrow [A_{\mu}] = \mathrm{Mass} \\ & [\partial_{\mu}] = \mathrm{Mass}, [F_{\mu\nu}] = \mathrm{Mass}^{2} \end{split}$$

Gauge symmetry

- Idea: Generate interactions from free Lagrangian by imposing local (i.e. $\alpha = \alpha(x)$) symmetries
- Does not fall from heaven; generalization of 'minimal coupling' in electrodynamics
- Final judge is experiment: It works!

 $\partial_{\mu}\phi^*\partial^{\mu}\phi - m^2\phi^*\phi$ is invariant under $\phi \to e^{i\alpha}\phi$.

What if now $\alpha = \alpha(x)$ depends on the space-time?

$$\partial_{\mu}(e^{i\alpha(x)}\phi)^{*}\partial^{\mu}(e^{i\alpha(x)}\phi) - m^{2}(e^{i\alpha(x)}\phi)^{*}(e^{i\alpha(x)}\phi)$$

$$= [\partial_{\mu}e^{i\alpha(x)} \cdot \phi + e^{i\alpha(x)} \cdot \partial_{\mu}\phi]^{*}[\partial^{\mu}e^{i\alpha(x)} \cdot \phi + e^{i\alpha(x)} \cdot \partial^{\mu}\phi] - m^{2}\phi^{*}\phi$$

$$= [ie^{i\alpha(x)}\partial_{\mu}\alpha(x) \cdot \phi + e^{i\alpha(x)} \cdot \partial_{\mu}\phi]^{*}[ie^{i\alpha(x)}\partial^{\mu}\alpha(x) \cdot \phi + e^{i\alpha(x)} \cdot \partial^{\mu}\phi] - m^{2}\phi^{*}\phi$$

$$= -ie^{-i\alpha(x)}\partial_{\mu}\alpha(x) \cdot \phi^{*} \cdot ie^{i\alpha(x)}\partial^{\mu}\alpha(x) \cdot \phi$$

$$- ie^{-i\alpha(x)}\partial_{\mu}\alpha(x) \cdot \phi^{*} \cdot e^{i\alpha(x)} \cdot \partial^{\mu}\phi$$

$$+ e^{-i\alpha(x)} \cdot \partial_{\mu}\phi^{*} \cdot ie^{i\alpha(x)}\partial^{\mu}\alpha(x) \cdot \phi$$

$$+ e^{-i\alpha(x)} \cdot \partial_{\mu}\phi^{*} \cdot e^{i\alpha(x)} \cdot \partial^{\mu}\phi$$

$$= \partial_{\mu}\phi \cdot \partial^{\mu}\phi - m^{2}\phi^{*}\phi$$
Not invariant under U(1

Can we find a derivative operator that commutes with the gauge transformation?

Define

 $D_{\mu} = \partial_{\mu} + iA_{\mu},$

where the gauge field A_{μ} transforms as

 $A_{\mu} \to A_{\mu} - \partial_{\mu} \alpha$

Can we find a derivative operator that commutes with the gauge transformation?

Define

 $D_{\mu} = \partial_{\mu} + iA_{\mu},$

where the gauge field A_{μ} transforms as

 $A_{\mu} \to A_{\mu} - \partial_{\mu} \alpha$

$$\begin{aligned} D_{\mu}\phi &\to (\partial_{\mu} + i[A_{\mu} - \partial_{\mu}\alpha(x)])[e^{i\alpha(x)}\phi] \\ &= \partial_{\mu}[e^{i\alpha(x)}\phi] + i[A_{\mu} - \partial_{\mu}\alpha(x)][e^{i\alpha(x)}\phi] \\ &= ie^{i\alpha(x)}\partial_{\mu}\alpha(x) \cdot \phi + e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi - i\partial_{\mu}\alpha(x)e^{i\alpha(x)}\phi \\ &= e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi \\ &= e^{i\alpha(x)}[\partial_{\mu}\phi + iA_{\mu}]\phi \\ &= e^{i\alpha(x)}D_{\mu}\phi \end{aligned}$$

Can we find a derivative operator that commutes with the gauge transformation?

Define $D_{\mu}\phi \rightarrow (\partial_{\mu} + i[A_{\mu} - \partial_{\mu}\alpha(x)])[e^{i\alpha(x)}\phi]$ $= \partial_{\mu}[e^{i\alpha(x)}\phi] + i[A_{\mu} - \partial_{\mu}\alpha(x)][e^{i\alpha(x)}\phi]$ $= ie^{i\alpha(x)}\partial_{\mu}\alpha(x) \cdot \phi + e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi - i\partial_{\mu}\alpha(x)e^{i\alpha(x)}\phi$ $= e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi$ $= e^{i\alpha(x)}[\partial_{\mu}\phi + iA_{\mu}]\phi$ $= e^{i\alpha(x)}D_{\mu}\phi$

Nota bene:

• We call D_{μ} the *covariant derivative*, because it transforms just like ϕ itself:

$$\phi \to e^{i\alpha(x)}\phi$$
 and $D_{\mu}\phi \to e^{i\alpha(x)}D_{\mu}\phi$

Can we find a derivative operator that commutes with the gauge transformation?

Define	$D_{\mu}\phi \to (\partial_{\mu} + i[A_{\mu} - \partial_{\mu}\alpha(x)])[e^{i\alpha(x)}\phi]$ = $\partial_{\mu}[e^{i\alpha(x)}\phi] + i[A_{\mu} - \partial_{\mu}\alpha(x)][e^{i\alpha(x)}\phi]$
$D_{\mu} = \partial_{\mu} + iA_{\mu},$	$= ie^{i\alpha(x)}\partial_{\mu}\alpha(x) \cdot \phi + e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi - i\partial_{\mu}\alpha(x)e^{i\alpha(x)}\phi$ $= ie^{i\alpha(x)}\partial_{\mu}\alpha(x) \cdot \phi + e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi - i\partial_{\mu}\alpha(x)e^{i\alpha(x)}\phi$
where the gauge field A_{μ} transforms as	$= e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi$
$A_{\mu} \to A_{\mu} - \partial_{\mu} \alpha$	$= e^{i\alpha(x)} [\partial_{\mu}\phi + iA_{\mu}]\phi$ = $e^{i\alpha(x)} D_{\mu}\phi$

Nota bene:

• We call D_{μ} the *covariant derivative*, because it transforms just like ϕ itself:

$$\phi \to e^{i\alpha(x)}\phi$$
 and $D_{\mu}\phi \to e^{i\alpha(x)}D_{\mu}\phi$

 $D_{\mu}\phi^{*}D^{\mu}\phi - m^{2}\phi^{*}\phi \rightarrow e^{-i\alpha(x)}D_{\mu}\phi^{*} \cdot e^{i\alpha(x)}D^{\mu}\phi - m^{2}e^{-i\alpha(x)}\phi^{*} \cdot e^{i\alpha(x)}\phi = D_{\mu}\phi^{*}D^{\mu}\phi - m^{2}e^{-i\alpha(x)}\phi^{*} + e^{i\alpha(x)}\phi^{*} +$

Expanding the Lagrangian

 $D_{\mu}\phi^*D^{\mu}\phi - m^2\phi^*\phi$ invariant under local U(1) transformations

 $D_{\mu}\phi^*D^{\mu}\phi - m^2\phi^*\phi = \partial_{\mu}\phi^*\partial^{\mu}\phi + iA^{\mu}(\phi\partial_{\mu}\phi^* - \phi^*\partial_{\mu}\phi) + \phi^*\phi A_{\mu}A^{\mu} - m^2\phi^*\phi$

- Demand symmetry \rightarrow Generate interactions
- Generated mass for gauge boson (after ϕ acquires a vacuum expectation value)
- Explicit mass term forbidden by gauge symmetry (although otherwise allowed):

 $m^2 A_\mu A^\mu \to m^2 (A_\mu - \partial_\mu \alpha) (A_\mu - \partial_\mu \alpha) \neq m^2 A_\mu A^\mu$

- Simplest form of Higgs mechanism
- Vector-scalar-scalar interaction

Non-Abelian gauge symmetry

Abelian	Non-Abelian: component notation	Non-Abelian: vector notation
$U = e^{i\alpha(x)}$	$U = e^{i\alpha^a(x)T_R^a}$	$U = e^{i\alpha^a(x)T_R^a}$
$\phi \to U\phi$	$\Phi^i \to U^i_{\ k} \Phi^k$	$\mathbf{\Phi} o U \mathbf{\Phi}$
A_{μ}	$A^a_\mu T^a_R$	$oldsymbol{A}_{\mu}$
$A_{\mu} \to A_{\mu} - \partial_{\mu} \alpha$	$A^a_{\mu}T^a \to UA^a_{\mu}T^aU^{\dagger} - \frac{i}{g}(\partial_{\mu}U)U^{\dagger}$	$A_{\mu} \rightarrow U A_{\mu} U^{\dagger} - \frac{i}{g} (\partial_{\mu} U) U^{\dagger}$
$F_{\mu\nu} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$	$F^a_{\mu\nu} := \partial_\mu A^a_\nu - \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu$	$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_{\mu u} & = \partial_{\mu}eta_{ u} - \partial_{ u}eta_{\mu} + ig[eta_{\mu},ela_{ u}] \end{aligned} \end{aligned}$
$F_{\mu\nu} \to F_{\mu\nu}$		$F_{\mu\nu} ightarrow U F_{\mu\nu} U^{\dagger}$
$F_{\mu\nu}$ invariant	$F^a_{\mu\nu}F^{a\mu\nu}$ invariant	$\operatorname{Tr}(\boldsymbol{F}_{\mu\nu}\boldsymbol{F}^{\mu\nu})$ invariant

$$D_{\mu} = \partial_{\mu} + igA^a_{\mu}T^a_R$$

Conjecture

- All fundamental internal symmetries are gauge symmetries.
 See also the discussion in Schwartz!
- Global symmetries are just "accidental" and not exact.

Spontaneous Symmetry Breaking

The Higgs mechanism

- The Higgs potential: $V = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$
- Vacuum = Ground state = Minimum of V:
- If $\mu^2 > 0$ (massive particle): $\phi_{min} = 0$ (no symmetry breaking)

- If $\mu^2 < 0$: $\phi_{min} = \pm v = \pm (-\mu^2/\lambda)^{1/2}$ These two minima in one dimension correspond to a continuum of minimum values in SU(2). The point $\phi = 0$ is now instable.
- Choosing the minimum (e.g. at +v) gives the vacuum a preferred direction in isospin space → spontaneous symmetry breaking
- Perform perturbation around the minimum

Higgs self-couplings

In the SM, the Higgs self-couplings are a consequence of the Higgs potential after expansion of the Higgs field $H\sim(1,2)_1$ around the vacuum expectation value which breaks the ew symmetry:

$$V_{H} = \mu^{2} H^{\dagger} H + \eta (H^{\dagger} H)^{2} \to \frac{1}{2} m_{h}^{2} h^{2} + \left(\sqrt{\frac{\eta}{2}} m_{h} h^{3}\right) + \left(\frac{\eta}{4} h^{4}\right)^{2} h^{4} h^{4}$$

with:

$$m_h^2 = 2\eta v^2, v^2 = -\mu^2/\eta$$

Note: v=246 GeV is fixed by the precision measures of G_F

In order to completely reconstruct the Higgs potential, on has to:

• Measure the 3h-vertex: via a measurement of Higgs pair production

$$\lambda_{3h}^{\rm SM} = \sqrt{\frac{\eta}{2}} m_h$$

 Measure the 4h-vertex: more difficult, not accessible at the LHC in the high-lumi phase

One page summary of the world

Gauge group

Particle content

Lagrangian (Lorentz + gauge + renormalizable)

SSB

$\mathrm{SU}(3)_c \times \mathrm{SU}(6)$	$(2)_L \times \mathrm{U}(1)_Y$
--	--------------------------------

Matter			HIGGS		GAUGE		
$Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$({f 3},{f 2})_{1/3}$	$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$(1, 2)_{-1}$	$H = \begin{pmatrix} h^+ \\ h^0 \end{pmatrix}$	$({f 1},{f 2})_1$	В	$({f 1},{f 1})_0$
u_R^c	$(\overline{3},1)_{-4/3}$	e_R^c	$(1,1)_{2}$			W	$({f 1},{f 3})_0$
d_R^c	$(\overline{3},1)$ $_{2/3}$	$ u_R^c$	$(1,1)_{0}$			G	$({f 8},{f 1})_0$

 $\mathcal{L} = -\frac{1}{4}G^{\alpha}_{\mu\nu}G^{\alpha\mu\nu} + \dots \overline{Q}_k \not D Q_k + \dots (D_{\mu}H)^{\dagger} (D^{\mu}H) - \mu^2 H^{\dagger}H - \frac{\lambda}{4!} (H^{\dagger}H)^2 + \dots Y_{k\ell} \overline{Q}_k H(u_R)_{\ell}$

- $H \to H' + \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v \end{pmatrix}$
- $\operatorname{SU}(2)_L \times \operatorname{U}(1)_Y \to \operatorname{U}(1)_Q$

- $B, W^3 \to \gamma, Z^0$ and $W^1_\mu, W^2_\mu \to W^+, W^-$
- Fermions acquire mass through Yukawa couplings to Higgs

IV. From the SM to predictions at the LHC

Scattering theory

Cross sections can be calculated as

$$\sigma = \frac{1}{F} \int \mathrm{dPS}^{(n)} \overline{\left| M_{fi} \right|^2}$$

* We integrate over all final state configurations (momenta, etc.).

★The phase space (dPS) only depend on the final state particle momenta and masses
 ★ Purely kinematical

- We average over all initial state configurations
 - \star This is accounted for by the flux factor F
 - \star Purely kinematical
- The matrix element squared contains the physics model
 - ★ Can be calculated from Feynman diagrams
 - \star Feynman diagrams can be drawn from the Lagrangian
 - * The Lagrangian contains all the model information (particles, interactions)

Cross section

The Lorentz-invariant phase space:

$$d\Phi_n = (2\pi)^4 \delta^{(4)}(p_a + p_b - \sum_{f=1}^n p_f) \prod_{f=1}^n \frac{d^3 p_f}{(2\pi)^3 2E_f}$$

The flux factor:
$$F = \sqrt{(p_a \cdot p_b)^2 - p_a^2 p_b^2}$$

Decay width

The Lorentz-invariant phase space:

$$d\Phi_n = (2\pi)^4 \delta^{(4)} (p_a - \sum_{f=1}^n p_f) \prod_{f=1}^n \frac{d^3 p_f}{(2\pi)^3 2E_f}$$

Rest frame of decaying particle: $E_a = M_a$

Life time and branching ratio

Branching ratio:
$$BR(i \rightarrow f) = \frac{\Gamma(i \rightarrow f)}{\Gamma(i \rightarrow all)}$$

The model

All the model information is included in the Lagrangian

Before electroweak symmetry breaking: very compact

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^{i}_{\mu\nu} W^{\mu\nu}_{i} - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a} \\ &+ \sum_{f=1}^{3} \left[\bar{L}_{f} \left(i \gamma^{\mu} D_{\mu} \right) L^{f} + \bar{e}_{Rf} \left(i \gamma^{\mu} D_{\mu} \right) e^{f}_{R} \right] \\ &+ \sum_{f=1}^{3} \left[\bar{Q}_{f} \left(i \gamma^{\mu} D_{\mu} \right) Q^{f} + \bar{u}_{Rf} \left(i \gamma^{\mu} D_{\mu} \right) u^{f}_{R} + \bar{d}_{Rf} \left(i \gamma^{\mu} D_{\mu} \right) d^{f}_{R} \right] \\ &+ D_{\mu} \varphi^{\dagger} D^{\mu} \varphi - V(\varphi) \end{aligned}$$

After electroweak symmetry breaking: quite large Example: electroweak boson interactions with the Higgs boson:

$$\begin{split} D_{\mu}\varphi^{\dagger} \ D^{\mu}\varphi &= \frac{1}{2}\partial_{\mu}h\partial^{\mu}h + \frac{e^{2}v^{2}}{4\sin^{2}\theta_{w}}W^{+}_{\mu}W^{-\mu} + \frac{e^{2}v^{2}}{8\sin^{2}\theta_{w}\cos^{2}\theta_{w}}Z_{\mu}Z^{\mu} \\ &+ \frac{e^{2}v}{2\sin^{2}\theta_{w}}W^{+}_{\mu}W^{-\mu}h + \frac{e^{2}v}{4\sin^{2}\theta_{w}\cos^{2}\theta_{w}}Z_{\mu}Z^{\mu}h \\ &+ \frac{e^{2}}{4\sin^{2}\theta_{w}}W^{+}_{\mu}W^{-\mu}hh + \frac{e^{2}}{8\sin^{2}\theta_{w}\cos^{2}\theta_{w}}Z_{\mu}Z^{\mu}hh \;. \end{split}$$

Feynman diagrams and Feynman rules I

The Feynman rules are the building blocks to construct Feynman diagrams

Loop diagrams

two interactions

four interactions

Loops exist, but their contribution is often small

Feynman diagrams and Feynman rules II

Feynman rules for the Standard Model

<u>Almost</u> all the building blocks necessary to draw any SM diagrams

QCD coupling much stronger than QED coupling → dominant diagrams

Drawing Feynman diagrams I

Drawing Feynman diagrams II

Find out the dominant diagrams for

• Process I.
$$gg \to t\bar{t}$$

♦ Process 2. $gg \rightarrow tth$

• Process 3. $u\bar{u} \rightarrow t\bar{t} \ bb$

What is the QCD/QED order? (keep only the dominant diagrams)

MadGraph5_aMC@NLO

• Check your answer online:

```
MadGraph5_aMC@NLOwebpage
```

• Requires registration

Web process syntax

MadGraph output

User requests a process

✤ g g > t t~ b b~ * u d~ > w+ z, w+ > e+ ve, $z > b b^{-}$ + etc.

QCD=0, QED=4

SUBROUTINE SMATRIX(P1,ANS) С C Generated by MadGraph II Version 3.83. Updated 06/13/05 C RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS C AND HELICITIES C FOR THE POINT IN PHASE SPACE P(0:3,NEXTERNAL) С C FOR PROCESS : $g g \rightarrow t t \sim b b \sim$ С C Crossing 1 is $g g \rightarrow t t \sim b b \sim$ IMPLICIT NONE С C CONSTANTS С Include "genps.inc" NCOMB, NCROSS INTEGER PARAMETER (NCOMB= 64, NCROSS= 1) INTEGER THEL PARAMETER (THEL=NCOMB*NCROSS) С **C ARGUMENTS** C REAL*8 P1(0:3,NEXTERNAL),ANS(NCROSS) С

MADGRAPH returns:

- Feynman diagrams
- Self-contained Fortran code for $|M_{fi}|^2$

Still needed:

- * What to do with a Fortran code?
- How to deal with hadron colliders?

Proton-Proton collisions I

The master formula for hadron colliders

$$\sigma = \frac{1}{F} \sum_{ab} \int dPS^{(n)} dx_a \ dx_b \ f_{a/p}(x_a) \ f_{b/p}(x_b) \overline{|M_{fi}|^2}$$

We sum over all proton constituents (a and b here)

We include the <u>parton densities</u> (the *f*-function)

They represent the probability of having a parton a inside the proton carrying a fraction x_a of the proton momentum

Х

- Valence quarks p=|uud>
- Gluons carry about 40% of momentum
- Sea quarks

light quark sea, strange sea

Altarelli-Parisi evolution equations

Altarelli-Parisi evolution equations

Altarelli-Parisi evolution equations

Х

Altarelli-Parisi evolution equations

Altarelli-Parisi evolution equations

Proton-Proton collisions II

This is not the end of the story...

- * At high energies, initial and final state quarks and gluons radiate other quark and gluons
- The radiated partons radiate themselves
- And so on...
- Radiated partons hadronize
- We observe hadrons in detectors

Input parameters

- In order to make predictions, the input parameters have to be fixed! Most importantly the coupling constants
- For N parameters need N measurements
 - $\alpha_s = 0.5$? or 0.118?

Need to consider running couplings, i.e., take into account loop effects!

Otherwise very rough predictions!

• $\alpha = 1/137 \sim 0.007$ or $1/127 \sim 0.008$?

