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III. The Standard Model of particle physics 
(2nd round)



• Introduce Fields & Symmetries

• Construct a local Lagrangian density

• Describe Observables

• How to measure them?

• How to calculate them? 

• Falsify: Compare theory with data

The general procedure
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Fields & Symmetries



Matter content of the Standard Model 
(including the antiparticles)2.2 Filling in the Details

2.2.1 The Particle Content

Matter Higgs Gauge

Q =

0

B@
uL

dL

1

CA (3,2) 1/3 L =

0

B@
⌫L

eL

1

CA (1,2)-1 H =

0

B@
h
+

h
0

1

CA (1,2)1 A (1,1)0

u
c

R
(3,1)-4/3 e

c

R
(1,1) 2 W (1,3)0

d
c

R
(3,1) 2/3 ⌫

c

R
(1,1) 0 G (8,1)0

Q
c =

0

B@
u
c

L

d
c

L

1

CA (3,2)-1/3 L
c =

0

B@
⌫
c

L

e
c

L

1

CA (1,2) 1 H =

0

B@
h
�

h
0

1

CA (1,2)�1 A (1,1)0

uR (3,1) 4/3 eR (1,1)-2 W (1,3)0

dR (3,1)-2/3 ⌫R (1,1) 0 G (8,1)0

Nota bene:

• Since the SM is chiral, we work with 2-component Weyl spinors.

• Chiral means that the left-handed and the right-handed particles transform di↵er-
ently under the gauge group: E.g. uL ⇠ (3,2) 1/3 and uR ⇠ (3,1) 4/3

• For every particle, there is an anti-particle which is usually not explicitly listed.

• Note that uc

R
is the charge conjugate of a right-handed particle and as such trans-

forms as a left-handed particle. More precisely, one should write (uR)c. Some other
common notation: uc

L
(for (uc)L), u or simply u or U .

• The reason why we list e.g. uc

R
instead of uR is that we want to use only left-handed

particles (important later for SUSY).

• The doublet structure of e.g. Q =

✓
uL

dL

◆
indicates how it transforms under SU(2)L.

It has absolutely nothing to do with Dirac spinors.

• The right-handed neutrino ⌫R is a hypothetical particle whose existence has not
been established.
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• Left-handed up quark uL:

• LH Weyl fermion: uLα~(1/2,0) of so(1,3)

• a color triplet: uLi~3 of SU(3)c

• Indices: (uL)iα with i=1,2,3 and α=1,2 

• Similarly, left-handed down quark dL

• uL and dL components of a SU(2)L doublet: Qβ = (uL , dL) ~ 2

• Q carries a hypercharge 1/3: Q ~ (3,2)1/3 of SU(3)c x SU(2)L x U(1)Y

• Indices: Qβiα with β=1,2 ; i=1,2,3 and α=1,2 

Matter content of the Standard Model



• There are three generations: Qk , k =1,2,3

• Lot’s of indices: Qkβiα(x)

• We know how the indices β,i,α transform under 
symmetry operations (i.e., which representations we have 
to use for the generators)

Matter content of the Standard Model



• Right-handed up quark uR:

• RH Weyl fermion: uRα.~(0,1/2) of so(1,3) 

• a color triplet: uRi~3 of SU(3)c

• a singlet of SU(2)L: uR~1 (no index needed)

• uR carries hypercharge 4/3: uR ~ (3,1)4/3

• Indices: (uR)iα. with i=1,2,3 and α.=1,2 (Note the dot)

• Note that uRc ~ (3*,1)-4/3

Matter content of the Standard Model



• Again there are three generations: uRk , k =1,2,3

• Lot’s of indices: uRkiα.(x)

• And so on for the other fields ...

Matter content of the Standard Model



• How many fermions are there 
in one generation?

Exercise



• How many fermions are there 
in one generation?

Exercise

uL : 3 , dL : 3 , uR : 3 , dR : 3
νL : 1 , eL : 1 , eR : 1 , (νR : 1)

15 (+1) fermions and 
15 (+1) anti-fermions



Terms for the Lagrangian



How to build Lorentz scalars? 
Scalar field (like the Higgs)

• In SU(2), the representations 2 and 2 are equivalent, but not identical/equal/same!
If one wants to replace 2 by 2, one needs some extra work.

Homework 2.1 Let � be a left-handed Weyl spinor. Show that ⌘ := i�2�
⇤
transforms

as a right-handed Weyl-spinor. Here, �2 is the second Pauli matrix.

Hint: Since � is left-handed, it will transform under the Lorentz group as � ! ⇤L�. You

need to show that ⌘ transforms under the Lorentz group as a right-handed Weyl spinor,

i.e. ⌘ ! ⇤R⌘. You can find the explicit form of ⇤L and ⇤R in Maggiore, but for this

homework just use the identity �2⇤⇤
L
�2 = ⇤R.

2.2.2 How to build a Lorentz scalar

Scalars: Spin 0
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Note: The mass dimension 
of each term in the 
Lagrangian has to be 4!



How to build Lorentz scalars? 
Fermions (spin 1/2)

Fermions: Spin 1/2

Left-handed Weyl spinor
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This will be of paramount importance later in the SM, so do not forget this point!
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We can now rewrite Eq. (2.8) (into the familiar form) as
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Note that it is more “natural” to write down the SM with Weyl spinors, because

• weak interactions distinguish between left- and right-handed particles,

• (the need for) the Higgs mechanism is easier to understand,

• Weyl spinors are the basic “building blocks” (smallest irreps of Lorentz group).

Vector Bosons: Spin 1

U(1) gauge boson (“Photon”)
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Note: Lorentz-invariance 
⇒ mass terms ‘marry’ 

left and right chiral 
fermions



How to build Lorentz scalars? 
Vector boson (spin 1)
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Mass term allowed by Lorentz invariance;
forbidden by gauge invariance
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FF̃ / ~E · ~B
Violates Parity, Time reversal, and CP 
symmetry; prop. to a total divergence 
→ doesn’t contribute in QED

BUT strong CP problem in QCD



• Why does each term in the 
Lagrangian has a mass 
dimension 4?

• What are the mass dimensions 
of the scalars, fermions and 
vector fields?

Exercise



• Why does each term in the 
Lagrangian has a mass 
dimension 4?

• What are the mass dimensions 
of the scalars, fermions and 
vector fields?

Exercise

S = ∫ d4ℒ , [S] = [ℏ] = 1

[d4x] = Length4 = Mass−4

[ℒ] = Mass4

ℒ ⊃ −
1
2

m2
ϕ ϕ2 ⇒ [ϕ] = Mass

ℒ ⊃ − mψ ψ†
LψR ⇒ [ψL.R] = Mass3/2

ℒ ⊃ −
1
2

m2
AAμAμ ⇒ [Aμ] = Mass

[∂μ] = Mass , [Fμν] = Mass2



• Idea: Generate interactions from free Lagrangian by 
imposing local (i.e. α = α(x)) symmetries

• Does not fall from heaven; generalization of ‘minimal 
coupling’ in electrodynamics

• Final judge is experiment: It works!

Gauge symmetry



Local gauge invariance 
for a complex scalar field

Relevant for SU(3)  strong CP problem (also present in SM but suppressed)

Kinetic mixing, if there are two Abelian gauge groups, U(1)A and U(1)B

�
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A
�

1

4
FBµ⌫F
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�

1

4
FAµ⌫F
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B
(2.11)

SU(2) gauge bosons will be discussed after the concept of covariant derivative has been
introduced.

2.2.3 Gauge Symmetries

Idea: Generate dynamics (i.e. interactions) from free Lagrangian by imposing local
(i.e. now ↵ = ↵(x)) symmetries.

Does not fall from heavens; generalization of “minimal coupling” in electrodynam-
ics/quantum mechanics.

Final judge is experiment: It works!

Local Gauge Invariance for Complex Scalar Field

Recall Lagrangian in Eq. (2.2)
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Relevant for SU(3)  strong CP problem (also present in SM but suppressed)

Kinetic mixing, if there are two Abelian gauge groups, U(1)A and U(1)B
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SU(2) gauge bosons will be discussed after the concept of covariant derivative has been
introduced.

2.2.3 Gauge Symmetries

Idea: Generate dynamics (i.e. interactions) from free Lagrangian by imposing local
(i.e. now ↵ = ↵(x)) symmetries.

Does not fall from heavens; generalization of “minimal coupling” in electrodynam-
ics/quantum mechanics.

Final judge is experiment: It works!
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Not invariant under U(1)!



Local gauge invariance 
for a complex scalar field

Can we find a derivative operator that commutes with the gauge transformation?

Not invariant under U(1)! The reason why it worked before was that @µ[ei↵·] = e
i↵
@µ[·].

Can we find a derivative operator that commutes with the gauge transformation?

Dµ[e
i↵(x)

·] = e
i↵(x)

Dµ[·] (2.13)

Define

Dµ = @µ + iAµ, (2.14)

where the gauge field Aµ transforms as

Aµ ! Aµ � @µ↵ (2.15)

under the gauge transformation. Now we can try again. Is

Dµ�
⇤
D

µ
��m

2
�
⇤
� (2.16)

invariant under � ! e
i↵(x)

�? We could repeat the previous calculation, but it is more
instructive to take a short-cut and prove Eq. (2.13) instead. The reason is that this will
also generalize to the non-Abelian case.
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Now you can expand Eq. (2.16) to discover the consequences of gauge invariance:
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Nota bene:

• We call Dµ the covariant derivative, because it transforms just like � itself:

� ! e
i↵(x)

� and Dµ� ! e
i↵(x)

Dµ� (2.19)
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⇤
@
µ
�+ iA

µ(�@µ�
⇤
� �

⇤
@µ�) + �

⇤
�AµA

µ
�m

2
�
⇤
� (2.18)

Nota bene:

• We call Dµ the covariant derivative, because it transforms just like � itself:

� ! e
i↵(x)

� and Dµ� ! e
i↵(x)

Dµ� (2.19)
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invariant under local U(1) transformations

Not invariant under U(1)! The reason why it worked before was that @µ[ei↵·] = e
i↵
@µ[·].

Can we find a derivative operator that commutes with the gauge transformation?

Dµ[e
i↵(x)

·] = e
i↵(x)

Dµ[·] (2.13)

Define

Dµ = @µ + iAµ, (2.14)

where the gauge field Aµ transforms as

Aµ ! Aµ � @µ↵ (2.15)

under the gauge transformation. Now we can try again. Is

Dµ�
⇤
D

µ
��m

2
�
⇤
� (2.16)

invariant under � ! e
i↵(x)

�? We could repeat the previous calculation, but it is more
instructive to take a short-cut and prove Eq. (2.13) instead. The reason is that this will
also generalize to the non-Abelian case.

Dµ� ! (@µ + i[Aµ � @µ↵(x)])[e
i↵(x)

�]

= @µ[e
i↵(x)

�] + i[Aµ � @µ↵(x)][e
i↵(x)

�]

= ie
i↵(x)

@µ↵(x) · �+ e
i↵(x)

@µ�+ iAµe
i↵(x)

�� i@µ↵(x)e
i↵(x)

�

= e
i↵(x)

@µ�+ iAµe
i↵(x)

�

= e
i↵(x)[@µ�+ iAµ]�

= e
i↵(x)

Dµ� (2.17)
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• Demand symmetry ! Generate interactions

• Generated mass for gauge boson (after � acquires a vacuum expectation value)

• Explicit mass term forbidden by gauge symmetry (although otherwise allowed):

m
2
AµA

µ
! m

2(Aµ � @µ↵)(Aµ � @µ↵) 6= m
2
AµA

µ (2.20)

• Simplest form of Higgs mechanism

• Vector-scalar-scalar interaction

Homework 2.2 Define the covariant derivative

Dµ = @µ + igA
a

µ
T

a

R
(2.21)

where g is the gauge coupling and T
a

R
are the representation matrices of the Lie algebra

elements T
a
(the subscript R reminds us that we are working in a given representation).

Under a gauge transformation

U = e
i↵

a(x)Ta

R (2.22)

the field � transforms as

� ! U� (2.23)

and we define

Aµ ! UAµU
†
�

i

g
(@µU)U †

. (2.24)

Note that U is a matrix and depends on the representation of the Lie algebra in which

� transforms (choice of T
a

R
in Eq. (2.22)). Show that

Dµ� ! UDµ�, (2.25)

i.e. Dµ� transforms covariantly.

Adding the Gauge Fields

Recall the gauge invariant Lagrangian for a complex scalar field from Eq. (2.16):

Dµ�
⇤
D

µ
��m

2
�
⇤
� (2.26)

When defining the covariant derivative, we were led to introduce gauge field A
a

µ
. Since

these fields are now present in the theory, we need to introduce kinetic terms for them

9

Expanding the Lagrangian



Local gauge invariance 
for a complex scalar fieldNon-Abelian gauge symmetry

(note that mass terms are forbidden by gauge invariance, see Eq. (2.20) on the preceding
page and Eq. (2.9) on page 6):

Dµ�
⇤
D

µ
��m

2
�
⇤
��

1

4
F

µ⌫
Fµ⌫ (2.27)

Consider first the case of a U(1) gauge field:

Fµ⌫ = @µA⌫ � @⌫Aµ (2.28)

It is easy to prove that this term is gauge invariant:

Fµ⌫ = @µA⌫ � @⌫Aµ ! @µ(A⌫ � @⌫↵(x))� @⌫(Aµ � @µ↵(x))

= @µA⌫ � @µ@⌫↵(x)� @⌫Aµ � @⌫@µ↵(x)

= @µA⌫ � @⌫Aµ

(2.29)

For the non-Abelian case (e.g. SU(2)), the situation is more complicated, and we need
to amend the definition of Fµ⌫ to make the product Fµ⌫F

µ⌫ gauge invariant. Here is a
short overview of the di↵erences between the abelian and non-abelian case:

Abelian Non-Abelian: component notation Non-Abelian: vector notation

U = e
i↵(x)

U = e
i↵

a(x)Ta

R U = e
i↵

a(x)Ta

R

� ! U� �
i
! U

i

k
�

k
� ! U�

Aµ A
a

µ
T

a

R
Aµ

Aµ ! Aµ � @µ↵ A
a

µ
T

a
! UA

a

µ
T

a
U

†
�

i

g
(@µU)U † Aµ ! UAµU

†
�

i

g
(@µU)U †

Fµ⌫ := @µA⌫ � @⌫Aµ F
a

µ⌫
:= @µA

a

⌫
� @⌫A

a

µ
� gf

abc
A

b

µ
A

c

⌫
F µ⌫ := @µA⌫ � @⌫Aµ + ig[Aµ,A⌫ ]

Fµ⌫ ! Fµ⌫ F µ⌫ ! UF µ⌫U
†

Fµ⌫ invariant F
a

µ⌫
F

aµ⌫ invariant Tr(F µ⌫F
µ⌫) invariant

Homework 2.3 Prove that

1

2
Tr(F µ⌫F

µ⌫) =
1

4
F

a

µ⌫
F

aµ⌫
. (2.30)

Hint: Tr(T a
T

b) = 1
2�

ab
.
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• All fundamental internal symmetries are gauge symmetries.  
See also the discussion in Schwartz! 

• Global symmetries are just “accidental” and not exact.

Conjecture



Spontaneous Symmetry Breaking



• The Higgs potential: V =μ2 ϕ†ϕ + λ (ϕ†ϕ)2

• Vacuum = Ground state = Minimum of V:

• If μ2>0 (massive particle): ϕmin = 0 (no symmetry breaking)

• If μ2<0: ϕmin = ±v = ±(-μ2/λ)1/2 

These two minima in one dimension correspond to a continuum of minimum values in 
SU(2).  
The point ϕ = 0 is now instable.

• Choosing the minimum (e.g. at +v) gives the vacuum a preferred direction in isospin 
space → spontaneous symmetry breaking

• Perform perturbation around the minimum

The Higgs mechanism



Higgs self-couplings
In the SM, the Higgs self-couplings are a consequence of the Higgs potential after expansion of the  
Higgs field H~(1,2)1 around the vacuum expectation value which breaks the ew symmetry:

with:

VH = µ
2
H

†
H + ⌘(H†

H)2 ! 1

2
m

2
h
h
2 +

r
⌘

2
mhh

3 +
⌘

4
h
4

m2
h = 2⌘v2 , v2 = �µ2/⌘ Note: v=246 GeV is fixed by the 

precision measures of GF

In order to completely reconstruct the  
Higgs potential, on has to:

• Measure the 3h-vertex:  
 via a measurement of Higgs pair production 
 
 
 

• Measure the 4h-vertex:  
more difficult, not accessible at the LHC in the high-lumi phase  

h
h

h

h

h

h

h

�SM
3h =

r
⌘

2
mh



One page summary of the world

 
Gauge group 
 
Particle 
content 
 
 

Lagrangian 
(Lorentz + gauge + 
renormalizable)  

SSB  
 
 
 
 
 

2 The Standard Model

2.1 One-page Summary of the World

Gauge group

SU(3)c ⇥ SU(2)L ⇥ U(1)Y

Particle content

Matter Higgs Gauge

Q =

0

B@
uL

dL

1

CA (3,2) 1/3 L =

0

B@
⌫L

eL

1

CA (1,2)-1 H =

0

B@
h
+

h
0

1

CA (1,2)1 A (1,1)0

u
c

R
(3,1)-4/3 e

c

R
(1,1) 2 W (1,3)0

d
c

R
(3,1) 2/3 ⌫

c

R
(1,1) 0 G (8,1)0

Lagrangian (Lorentz + gauge + renormalizable)

L = �
1

4
G

↵

µ⌫
G

↵µ⌫+. . . Q
k
/DQk+. . . (DµH)†(Dµ

H)�µ
2
H

†
H�

�

4!
(H†

H)2+. . . Yk`Qk
H(uR)`

Spontaneous symmetry breaking

• H ! H
0 + 1p

2

✓
0
v

◆

• SU(2)L ⇥ U(1)Y ! U(1)Q

• A,W
3
! �, Z

0 and W
1
µ
,W

2
µ
! W

+
,W

�

• Fermions acquire mass through Yukawa couplings to Higgs
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IV. From the SM to predictions at the LHC
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Scattering theory

✦Cross sections can be calculated as!

!
!
!

✤ We integrate over all final state configurations (momenta, etc.).!
★The phase space (dPS) only depend on the final state particle momenta and masses!
★ Purely kinematical!
!

✤ We average over all initial state configurations!
★ This is accounted for by the flux factor F!
★ Purely kinematical!
!

✤ The matrix element squared contains the physics model!
★ Can be calculated from Feynman diagrams 
★ Feynman diagrams can be drawn from the Lagrangian!
★ The Lagrangian contains all the model information (particles, interactions) 

� =
1

F

Z
dPS(n)

��Mfi

��2



Cross section

The Lorentz-invariant phase space:

The flux factor: F =
q
(pa · pb)2 � p2ap

2
b

d� =
1

F
|M |2d�nThe differential cross section:

d�n = (2⇡)4�(4)(pa + pb �
nX

f=1

pf )
nY

f=1

d3pf
(2⇡)32Ef



Decay width

The Lorentz-invariant phase space:

Rest frame of decaying particle:

The differential decay width: d� =
1

2Ea
|M |2d�n

d�n = (2⇡)4�(4)(pa �
nX

f=1

pf )
nY

f=1

d3pf
(2⇡)32Ef

Ea = Ma



Life time and branching ratio

⌧ = 1/�Life time:

Branching ratio: BR(i ! f) =
�(i ! f)

�(i ! all)
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✦ All the model information is included in the Lagrangian!!!
✤Before electroweak symmetry breaking: very compact!
!
!
!
!
!
!
!

!
!!

✤After electroweak symmetry breaking: quite large!
 Example: electroweak boson interactions with the Higgs boson:!

L = � 1

4
Bµ⌫B

µ⌫ � 1

4
W i

µ⌫W
µ⌫
i � 1

4
Ga

µ⌫G
µ⌫
a

+
3X

f=1

h
L̄f

⇣
i�µDµ

⌘
Lf + ēRf

⇣
i�µDµ

⌘
efR

i

+
3X

f=1

h
Q̄f

⇣
i�µDµ

⌘
Qf + ūRf

⇣
i�µDµ

⌘
uf
R + d̄Rf

⇣
i�µDµ

⌘
dfR

i

+Dµ'
†Dµ'� V (')
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Feynman diagrams and Feynman rules (1)
✦ Diagrammatic representation of the Lagrangian!

✤ Electron-positron-photon (q = -1)!
!

!
!
!
!

✤ Muon-antimuon-photon (q = -1)!
!
!
!
!
!
✦ The Feymman rules are the building blocks to construct Feynman diagrams!

e+

e�

µ�

µ+

From the Lagrangian

...
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Feynman diagram loops

14

two interactions

...
four interactions

Loops exist, but 
their contribution 

can usually be 
neglected

Loops exist,
but their 
contribution 
is often small
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Feynman diagrams and Feynman rules (2)

✦ From Feynman diagrams to Mfi  :!
!

!
!

!
!
!

!
!
!
!
!
!
!
!
!
!
!

✤ We construct all possible diagrams with the set of rules at our disposal!
✤ We can then calculate the squared matrix element and get the cross section

e+

e�

µ�

µ+

Feynman rules

iMfi =
h
v̄sa(pa) (�ie�µ) usb(pb)

i �i⌘µ⌫
(pa + pb)2

h
ūs2(p2) (�ie�⌫) vs1(p1)

i

External!
particles

Interactions Propagator
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Feynman rules for the Standard Model

Almost all the building 
blocks necessary to draw 

any Standard Model 
diagrams

QCD coupling stronger 
than QED coupling!
→ dominant diagrams

CERN Summer Program Tim Stelzer 

J� QED 

Z QED 

W+- QED 

g QCD 

h 
QED 
(m) 

Feynman Rules! 

qq J l l J� �

qqg

W W J� �

qqZ llZ

qq Wc l WQ

ggg

W W Z� �

W W h� �
qqh llh

gggg

WWWW

Partial list from SM 
ZZh

38 

Almost all the building 
blocks necessary to 
draw any SM diagrams

QCD coupling much 
stronger than QED coupling
→ dominant diagrams
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CERN Summer Program Tim Stelzer 

J� QED 

Z QED 

W+- QED 

g QCD 

h 
QED 
(m) 

Feynman Rules! 

qq J l l J� �

qqg

W W J� �

qqZ llZ

qq Wc l WQ

ggg

W W Z� �

W W h� �
qqh llh

gggg

WWWW

Partial list from SM 
ZZh

38 

17

Drawing Feynman diagrams (1)

✦ We can now combine building blocks to draw diagrams!
✤ This ensures to focus only on the allowed diagrams!
✤ We must only consider the dominant diagrams!
!

✦ Process 0. uū ! tt̄

QCD2

QED2 (subdominant)
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Drawing Feynman diagrams (2)

✦ Find out the dominant diagrams for!
!

✤ Process 1.!
!
!

✤ Process 2.!
!
!

✤ Process 3.  

!
✦  What is the QCD/QED order?!

(keep only the dominant diagrams)

gg ! tt̄

gg ! tt̄h

CERN Summer Program Tim Stelzer 

J� QED 

Z QED 

W+- QED 

g QCD 

h 
QED 
(m) 

Feynman Rules! 

qq J l l J� �

qqg

W W J� �

qqZ llZ

qq Wc l WQ

ggg

W W Z� �

W W h� �
qqh llh

gggg

WWWW

Partial list from SM 
ZZh

38 

uū ! tt̄ bb̄



MadGraph5_aMC@NLO

• Check your answer online:  
 
MadGraph5_aMC@NLOwebpage

• Requires registration



Web process syntaxThe Standard Model and Beyond                                                     Predictions                                                     Event simulations                                                   Challenge

Guillaume Chalons & Benjamin Fuks - August 2015 - CERN summer student program 2015 - MADGRAPH

Web process syntax

21

u u~ > b b~ t t~
Initial state

Final state

u u~ > h > b b~ t t~
Required intermediate particles

u u~ > b b~ t t~, t~ > w- b~
Specific decay chain

u u~ > b b~ t t~ / z a
Excluded particles

u u~ > b b~ t t~ QED=2
Minimal coupling order
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MADGRAPH so far

22

✦ User requests a process!

✤ g g > t t~ b b~!
✤ u d~ > w+ z, w+ > e+ ve, z > b b~!
✤ etc.

CERN Summer Program Tim Stelzer 

MadGraph 

• User Requests:   
– gg > tt~bb~ 
– QCD Order = 4 
– QED Order =0 

 

• MadGraph Returns: 
– Feynman diagrams  
– Self-Contained Fortran Code for |M|^2 

 SUBROUTINE SMATRIX(P1,ANS) 
C 
C Generated by MadGraph II Version 3.83. Updated 06/13/05 
C RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS 
C AND HELICITIES 
C FOR THE POINT IN PHASE SPACE P(0:3,NEXTERNAL) 
C 
C FOR PROCESS : g g -> t t~ b b~ 
C 
C Crossing   1 is g g -> t t~ b b~ 
      IMPLICIT NONE 
C 
C CONSTANTS 
C 
      Include "genps.inc" 
      INTEGER                 NCOMB,     NCROSS 
      PARAMETER (             NCOMB=  64, NCROSS=  1) 
      INTEGER    THEL 
      PARAMETER (THEL=NCOMB*NCROSS) 
C 
C ARGUMENTS 
C 
      REAL*8 P1(0:3,NEXTERNAL),ANS(NCROSS) 
C 
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Diagrams made by MadGraph5
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✦ MADGRAPH returns:!
✤ Feynman diagrams!
✤ Self-contained Fortran code for |Mf i|2!

!
✦Still needed:!

✤ What to do with a Fortran code?!
✤ How to deal with hadron colliders?
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✦The master formula for hadron colliders!
!
!
!
✤ We sum over all proton constituents (a and b here)!
!

✤ We include the parton densities (the f-function)!
!
!
!
!
!
!
!
They represent the probability of having a parton a inside the proton carrying a fraction xa 
of the proton momentum!

� =
1

F

X

ab

Z
dPS(n)dxa dxb fa/p(xa) fb/p(xb)|Mfi|2

a

b
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PDFs: x-dependence
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PDFs: Q-dependence

• Valence quarks 
p=|uud〉

• Gluons 
carry about 40% of momentum

• Sea quarks 
light quark sea, strange sea 

Altarelli-Parisi evolution equations
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✦ This is not the end of the story...!
✤ At high energies, initial and final state quarks and gluons radiate other quark and gluons!
✤ The radiated partons radiate themselves!
✤ And so on...!
✤ Radiated partons hadronize!
✤ We observe hadrons in detectors



Input parameters

• In order to make predictions, the input parameters have to be fixed! 
Most importantly the coupling constants 

• For N parameters need N measurements

• αs = 0.5? or 0.118?  
Need to consider running couplings, i.e., take into account loop 
effects!  
Otherwise very rough predictions!

• α = 1/137 ~ 0.007 or 1/127 ~ 0.008?

• etc.  


