(B)SM and the LHC

I. Schienbein U Grenoble Alpes/LPSC Grenoble

Summer School in Particle and Astroparticle physics Annecy-le-Vieux, 19-26 July 2022

III. The Standard Model of particle physics (2nd round)

• **Introduce Fields & Symmetries**

- Introduce Fields & Symmetries
- **Construct a local Lagrangian density**

- Introduce Fields & Symmetries
- Construct a local Lagrangian density
- **Describe Observables**
	- How to measure them?
	- How to calculate them?

- Introduce Fields & Symmetries
- Construct a local Lagrangian density
- Describe Observables
	- How to measure them?
	- How to calculate them?
- **Falsify: Compare theory with data**

Fields & Symmetries

Matter content of the Standard Model (including the antiparticles)

- **Left-handed up quark** U_L **:**
	- LH Weyl fermion: **uLα~(1/2,0)** of so(1,3)
	- a color triplet: u_{Li} \sim 3 of SU(3)_c
	- Indices: $(u_L)_{i\alpha}$ with $i=1,2,3$ and $\alpha=1,2$
- Similarly, left-handed down quark **dL**
- **u**_L and d_L components of a $SU(2)_L$ doublet: $Q_B = (u_L, d_L) \sim 2$
	- **Q** carries a hypercharge $1/3$: $Q \sim (3,2)_{1/3}$ of $SU(3)_c \times SU(2)_L \times U(1)_Y$
	- Indices: $Q_{\text{B}i\alpha}$ with $\beta=1,2$; i=1,2,3 and $\alpha=1,2$

- There are three generations: **Qk** , k =1,2,3
- Lot's of indices: **Q**k**βi^α**(x)
- We know how the indices **β,i,^α** transform under symmetry operations (i.e., which representations we have to use for the generators)

- Right-handed up quark **uR**:
	- RH Weyl fermion: **uRα.~(0,1/2)** of so(1,3)
	- a color triplet: $u_{\text{R}i}$ \sim 3 of SU(3)_c
	- a singlet of $SU(2)_L$: **u_R** I (no index needed)
	- **u_R** carries hypercharge $4/3$: $\mathbf{u}_R \sim (3,1)_{4/3}$
	- Indices: $(u_R)_{i\alpha}$, with $i=1,2,3$ and $\alpha=1,2$ (Note the dot)
	- Note that $u_R^c \sim (3^*, 1)$ -4/3

- Again there are three generations: u_{Rk} , $k = 1,2,3$
- Lot's of indices: **uRkiα**.(x)
- And so on for the other fields ...

Exercise

• How many fermions are there in one generation?

Exercise

How many fermions are there in one generation?

 u_L : 3, d_L : 3, u_R : 3, d_R : 3 ν ^{*L*} : 1, *e*_{*L*} : 1, *e*_{*R*} : 1, (ν _{*R*} : 1)

15 (+1) fermions and 15 (+1) anti-fermions

Terms for the Lagrangian

How to build Lorentz scalars? Scalar field (like the Higgs) 2.2.2.2 Scalar field (like the Higgs)

Real field ϕ 1 2 $\partial_\mu\phi\partial^\mu\phi-\frac{1}{2}$ 2 m^2 Complex field $\phi = \frac{1}{\sqrt{2}}(\varphi_1 + i\varphi_2)$ $\partial_{\mu}\phi^{\ast}\partial^{\mu}\phi-m^{2}\phi^{\ast}$ ϕ

 ϕ^2 and the state of each term in the state of each term in the state of ϕ^2 Note: The mass dimension of each term in the Lagrangian has to be 4!

Note that Eq. (2.2) has a U(1) symmetry. If ! *eⁱ*↵, we have:

How to build Lorentz scalars? Fermions (spin 1/2) Left-handed Weyl spinor *i* **de Dund Lorenze Scara 5.
** *L* **(2.4)** *i* **(2.4)** *L* **(3.4)** *i* **(2.4)** *i* **(2.4)**

Left-handed Weyl spinor Left-handed Weyl spinor *i † R*¹*R* (2.5) *R*

 $i \psi_L^\intercal \overline{\sigma}^\mu \partial_\mu \psi_L$ and right and ri

Right-handed Weyl spinor Right-handed Weyl spinor *i † ^L^µ*@*^µ ^L* + *i †*

> $i\psi_R^{\dagger}\sigma^{\mu}\partial_{\mu}\psi_R$ $R^{\dagger} \sigma^{\mu} \partial_{\mu} \psi_R$ $\partial_\mu \psi_R$ importance later in the SM, so do not for η

Mass term mixes left and right

 $i \psi_L^\dagger \overline{\sigma}^\mu \partial_\mu \psi_L + i \psi_R^\dagger \sigma^\mu \partial_\mu \psi_R - m (\psi_L^\dagger \psi_R + \psi_R^\dagger \psi_L)$ $R^{\dagger}\psi_L$) τ $\iota \varphi$ $\frac{1}{\mathsf{R}}\sigma^\mu\partial_\mu\psi$ *^R*

$$
i\psi_L^{\dagger} \overline{\sigma}^{\mu} \partial_{\mu} \psi_L
$$
\nRight-handed Weyl spinor\n
$$
\overline{\sigma}^{\mu} = (1, \sigma^i)
$$
\n
$$
\overline{\sigma}^{\mu} = (1, -\sigma^i)
$$

Dirac spinor in chiral basis Dirac spinor in chiral basis \blacksquare basis \blacksquare

$$
\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} \qquad \qquad i \overline{\Psi} \gamma^\mu \partial_\mu \Psi - m \overline{\Psi} \Psi \quad \text{with} \quad \overline{\Psi} = \Psi^\dagger \gamma^0 \quad \text{and} \quad \gamma^\mu = \begin{pmatrix} 0 & \sigma^\mu \\ \overline{\sigma}^\mu & 0 \end{pmatrix}
$$

How to build Lorentz scalars? Fermions (spin 1/2) Left-handed Weyl spinor *i* **de Dund Lorenze Scara 5.
** *L* **(2.4)** *i* **(2.4)** *L* **(3.4)** *i* **(2.4)** *i* **(2.4)**

Left-handed Weyl spinor Left-handed Weyl spinor *i † R*¹*R* (2.5) *R*

 $i \psi_L^\intercal \overline{\sigma}^\mu \partial_\mu \psi_L$ and right and ri

Right-handed Weyl spinor Right-handed Weyl spinor *i † ^L^µ*@*^µ ^L* + *i †*

> $i\psi_R^{\dagger} \sigma^{\mu} \partial_{\mu} \psi_R$ $R^{\dagger} \sigma^{\mu} \partial_{\mu} \psi_R$

Mass term mixes left and right

 $i \psi_L^{\dagger} \overline{\sigma}^{\mu} \partial_{\mu} \psi_L + i \psi_R^{\dagger} \sigma^{\mu} \partial_{\mu} \psi_R - m (\psi_L^{\dagger} \psi_R + \psi_R^{\dagger} \psi_L)$ left and right τ $\iota \varphi$ $\frac{1}{\mathsf{R}}\sigma^\mu\partial_\mu\psi$ *^R*

 $i\psi^{\dagger}_L\overline{\sigma}^{\mu}\partial_{\mu}\psi_L$ and $\sigma^{\mu}=(1,\sigma^i)$ $\bar{\sigma}^{\mu}=(1,-\sigma^{i})$ $L = \mu \qquad (1 \qquad -i)$

> $R \psi_L$) left and right chiral $\mathcal{O}_{\mu}\psi_R$ is a set of paramount importance later in the SM, so do not forget this point $\mathcal{O}_{\mu}\psi_R$ Note: Lorentz-invariance \Rightarrow mass terms 'marry' left and right chiral fermions

Dirac spinor in chiral basis Dirac spinor in chiral basis \blacksquare basis \blacksquare

$$
\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} \qquad \qquad i \overline{\Psi} \gamma^\mu \partial_\mu \Psi - m \overline{\Psi} \Psi \quad \text{with} \quad \overline{\Psi} = \Psi^\dagger \gamma^0 \quad \text{and} \quad \gamma^\mu = \begin{pmatrix} 0 & \sigma^\mu \\ \overline{\sigma}^\mu & 0 \end{pmatrix}
$$

How to build Lorentz scalars? **• Vector boson (spin 1)** *µ* 0 N_{back} is more than $\mathcal{L}_{\text{back}}$ to write down the SM with Weyl spinors, because $\mathcal{L}_{\text{back}}$ *•* weak interactions distinguish between left- and right-handed particles,

U(1) gauge boson ("Photon") $-\frac{1}{4}$ 4 $F_{\mu\nu}F^{\mu\nu} +$ 1 2 $-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{1}{2}m^2A_{\mu}A^{\mu}$ where $F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}$ reas term anowed by Lorentz myariance,
forbidden by gauge invariance Mass term allowed by Lorentz invariance; $U(1)$ gauge boson **A**
Mass term allowed by Lorentz invariance: invariant)
Invariante de la contexta de la co

In principle, there is a second invariant In principle, there is a second invariant

$$
-\frac{1}{4}F_{\mu\nu}\widetilde{F}^{\mu\nu}\quad\text{with}\quad\widetilde{F}_{\mu\nu}=\frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}
$$

 $F\tilde{F} \propto \vec{E} \cdot \vec{B}$

 $\frac{\mu\nu\rho\sigma}{F_{\rho\sigma}}$ \rightarrow doesn't contribute in QED Violates Parity, Time reversal, and CP symmetry; prop. to a total divergence

BUT strong CP problem in QCD

Exercise

- Why does each term in the Lagrangian has a mass dimension 4?
- What are the mass dimensions of the scalars, fermions and vector fields?

Exercise

- Why does each term in the Lagrangian has a mass dimension 4?
- What are the mass dimensions of the scalars, fermions and vector fields?

$$
S = \int d^4 \mathcal{L}, [S] = [\hbar] = 1
$$

$$
[d^4x] = \text{Length}^4 = \text{Mass}^{-4}
$$

$$
[\mathcal{L}] = \text{Mass}^4
$$

\n
$$
\mathcal{L} \supset -\frac{1}{2} m_{\phi}^2 \phi^2 \Rightarrow [\phi] = \text{Mass}
$$

\n
$$
\mathcal{L} \supset -m_{\psi} \psi_L^{\dagger} \psi_R \Rightarrow [\psi_{L,R}] = \text{Mass}^{3/2}
$$

\n
$$
\mathcal{L} \supset -\frac{1}{2} m_A^2 A_{\mu} A^{\mu} \Rightarrow [A_{\mu}] = \text{Mass}
$$

\n
$$
[\partial_{\mu}] = \text{Mass}, [F_{\mu\nu}] = \text{Mass}^2
$$

Gauge symmetry

- Idea: Generate interactions from free Lagrangian by imposing **local (i.e.** $\alpha = \alpha(x)$ **) symmetries**
- Does not fall from heaven; generalization of 'minimal coupling' in electrodynamics
- Final judge is experiment: It works!

Local gauge invariance for a complex scalar field Recall Lagrangian in Eq. (2.2) Tor a complex scalar field Local Gauge Invariance for Complex Scalar Fields

 $\partial_{\mu}\phi^*\partial^{\mu}\phi - m^2\phi^*\phi$ is invariant under $\phi \to e^{i\alpha}\phi$. $\partial h^* \partial^\mu A = m^2 h^* h$ is inverse under h ver

VONG BOON SECTEMBER SHOW THAT SHOW IS INVARIANT UNDER SHOW IS IN THE SHOW IS INVARIANT UP: What if now $\alpha = \alpha(x)$ depends on the space-time?

$$
\partial_{\mu}(e^{i\alpha(x)}\phi)^*\partial^{\mu}(e^{i\alpha(x)}\phi) - m^2(e^{i\alpha(x)}\phi)^*(e^{i\alpha(x)}\phi)
$$
\n
$$
= [\partial_{\mu}e^{i\alpha(x)}\cdot\phi + e^{i\alpha(x)}\cdot\partial_{\mu}\phi]^*[\partial^{\mu}e^{i\alpha(x)}\cdot\phi + e^{i\alpha(x)}\cdot\partial^{\mu}\phi] - m^2\phi^*\phi
$$
\n
$$
= [ie^{i\alpha(x)}\partial_{\mu}\alpha(x)\cdot\phi + e^{i\alpha(x)}\cdot\partial_{\mu}\phi]^* [ie^{i\alpha(x)}\partial^{\mu}\alpha(x)\cdot\phi + e^{i\alpha(x)}\cdot\partial^{\mu}\phi] - m^2\phi^*\phi
$$
\n
$$
= [-ie^{-i\alpha(x)}\partial_{\mu}\alpha(x)\cdot\phi^* + e^{-i\alpha(x)}\cdot\partial_{\mu}\phi^*][ie^{i\alpha(x)}\partial^{\mu}\alpha(x)\cdot\phi + e^{i\alpha(x)}\cdot\partial^{\mu}\phi] - m^2\phi^*\phi
$$
\n
$$
= -ie^{-i\alpha(x)}\partial_{\mu}\alpha(x)\cdot\phi^*\cdot ie^{i\alpha(x)}\cdot\partial^{\mu}\phi
$$
\n
$$
+ e^{-i\alpha(x)}\cdot\partial_{\mu}\phi^*\cdot ie^{i\alpha(x)}\partial^{\mu}\alpha(x)\cdot\phi
$$
\n
$$
+ e^{-i\alpha(x)}\cdot\partial_{\mu}\phi^*\cdot ie^{i\alpha(x)}\cdot\partial^{\mu}\phi
$$
\n
$$
- m^2\phi^*\phi
$$
\n
$$
= \partial_{\mu}\phi \cdot\partial^{\mu}\phi - m^2\phi^*\phi + \text{non-zero terms}
$$
\nNot invariant under U(1)!

@*^µ*↵(*x*) *·* ⁺ *^eⁱ*↵(*x*) *·* @*^µ*] *^m*²

Local gauge invariance and the same of α for a complex scalar field *Dµ*⇤ *^D^µ ^m*² ⇤ = @*µ*[*eⁱ*↵(*x*) $\frac{1}{2}$ @*µ*↵(*x*) *·* ⁺ *^eⁱ*↵(*x*) @*µ* + *iAµeⁱ*↵(*x*) *ⁱ*@*µ*↵(*x*)*eⁱ*↵(*x*) $\frac{1}{2}$ for a cor = *eⁱ*↵(*x*) **U**∴ → (2.16) → (2.1 *A^µ* ! *A^µ* @*µ*↵ (2.15) under the gauge transformation. Now we can try again. Is

Can we find a derivative operator that commutes with the gauge transformation? *Dan* we find a derivative operator that commutes with the gauge transionm \mathbf{r} that commutes with the gauge. Lan we find a derivative operator that commutes with $\mathfrak t$ Can we find a derivative eperator that commutes with the gauge transformation? also generalize to the non-Abelian case.

Define

 $D_\mu = \partial_\mu + i A_\mu,$

where the *gauge field* A_μ transforms as

 $A_{\mu} \rightarrow A_{\mu} - \partial_{\mu} \alpha$ μ^2

Local gauge invariance and the same of α for a complex scalar field *Dµ*⇤ *^D^µ ^m*² ⇤ (2.16) = @*µ*[*eⁱ*↵(*x*) $\frac{1}{2}$ @*µ*↵(*x*) *·* ⁺ *^eⁱ*↵(*x*) @*µ* + *iAµeⁱ*↵(*x*) *ⁱ*@*µ*↵(*x*)*eⁱ*↵(*x*) $\frac{1}{2}$ for a cor = *eⁱ*↵(*x*) [@*µ* + *iAµ*] *A^µ* ! *A^µ* @*µ*↵ (2.15) under the gauge transformation. Now we can try again. Is ⇤ (2.16)

Can we find a derivative operator that commutes with the gauge transformation? *Dan* we find a derivative operator that commutes with the gauge transionm \mathbf{r} that commutes with the gauge. Lan we find a derivative operator that commutes with $\mathfrak t$ Can we find a derivative eperator that commutes with the gauge transformation? also generalize to the non-Abelian case.

Define

where the *gauge field* A_μ transforms as \vert =

 μ^2

The
\n
$$
D_{\mu}\phi \rightarrow (\partial_{\mu} + i[A_{\mu} - \partial_{\mu}\alpha(x))] [e^{i\alpha(x)}\phi]
$$
\n
$$
D_{\mu} = \partial_{\mu} + iA_{\mu},
$$
\n
$$
= ie^{i\alpha(x)}\partial_{\mu}\alpha(x) \cdot \phi + e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi - i\partial_{\mu}\alpha(x)e^{i\alpha(x)}\phi
$$
\n
$$
= e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi
$$
\n
$$
= e^{i\alpha(x)}[\partial_{\mu}\phi + iA_{\mu}]\phi
$$
\n
$$
= e^{i\alpha(x)}D_{\mu}\phi
$$
\n
$$
= e^{i\alpha(x)}D_{\mu}\phi
$$

Local gauge invariance and the same of α for a complex scalar field *Dµ*⇤ *^D^µ ^m*² ⇤ (2.16) = @*µ*[*eⁱ*↵(*x*) $\frac{1}{2}$ @*µ*↵(*x*) *·* ⁺ *^eⁱ*↵(*x*) @*µ* + *iAµeⁱ*↵(*x*) *ⁱ*@*µ*↵(*x*)*eⁱ*↵(*x*) $\frac{1}{2}$ for a cor = *eⁱ*↵(*x*) [@*µ* + *iAµ*] *A^µ* ! *A^µ* @*µ*↵ (2.15) under the gauge transformation. Now we can try again. Is ⇤ (2.16)

Can we find a derivative operator that commutes with the gauge transformation? *Dan* we find a derivative operator that commutes with the gauge transionm \mathbf{r} that commutes with the gauge. Lan we find a derivative operator that commutes with $\mathfrak t$ Can we find a derivative eperator that commutes with the gauge transformation? also generalize to the non-Abelian case.

 N ota bene: N Nota bene: a beile.

 $\bullet\,$ We call D_μ the $covariant\; derivative,$ because it transforms just like ϕ itself: \bullet we can D_{μ} the *covariant derivative*, because it transforms just like φ itsen.

⇤ *· ^eⁱ*↵(*x*)

$$
\phi \to e^{i\alpha(x)}\phi
$$
 and $D_{\mu}\phi \to e^{i\alpha(x)}D_{\mu}\phi$

From this, it directly follows that Eq. (2.16) is invariant:

ī

Local gauge invariance and the same of α for a complex scalar field *Dµ*⇤ *^D^µ ^m*² ⇤ = @*µ*[*eⁱ*↵(*x*) $\frac{1}{2}$ @*µ*↵(*x*) *·* ⁺ *^eⁱ*↵(*x*) @*µ* + *iAµeⁱ*↵(*x*) *ⁱ*@*µ*↵(*x*)*eⁱ*↵(*x*) $\frac{1}{2}$ for a cor = *eⁱ*↵(*x*) **U**∴ → (2.16) → (2.1 *A^µ* ! *A^µ* @*µ*↵ (2.15) under the gauge transformation. Now we can try again. Is

Can we find a derivative operator that commutes with the gauge transformation? *Dan* we find a derivative operator that commutes with the gauge transionm \mathbf{r} that commutes with the gauge. Lan we find a derivative operator that commutes with $\mathfrak t$ Can we find a derivative eperator that commutes with the gauge transformation? also generalize to the non-Abelian case.

 N ota bene: N Nota bene: a beile.

also generalize to the non-Abelian case.

^Dµ ! (@*^µ* ⁺ *ⁱ*[*A^µ* @*µ*↵(*x*)])[*eⁱ*↵(*x*)

 $\bullet\,$ We call D_μ the $covariant\; derivative,$ because it transforms just like ϕ itself: \bullet we can D_{μ} the *covariant derivative*, because it transforms just like φ itsen.

⇤ *· ^eⁱ*↵(*x*)

$$
\phi \to e^{i\alpha(x)}\phi
$$
 and $D_{\mu}\phi \to e^{i\alpha(x)}D_{\mu}\phi$

From this, it directly follows that Eq. (2.16) is invariant:

]

Nota bene:

 $\frac{d}{dx}(x) \prod_{i=1}^{n} \mu_{i} \leftarrow \frac{d}{dx} \sum_{i=1}^{n} \frac{d}{dx} \left(\frac{d}{dx} \right) dx + \frac{d}{dx} \frac$ $D_{\mu}\phi^*D^{\mu}\phi - m^2\phi^*\phi \to e^{-i\alpha(x)}D_{\mu}\phi^* \cdot e^{i\alpha(x)}D^{\mu}\phi - m^2e^{-i\alpha(x)}\phi^* \cdot e^{i\alpha(x)}\phi = D_{\mu}\phi^*D^{\mu}\phi - m^2e^{-i\alpha(x)}D^{\mu}\phi$

Local gauge invariance Lapanung ult Lagi digidil *A^µ* ! *A^µ* @*µ*↵ (2.15) **E**
 P Pz *P* **P P** *ei e <i>e*_{* e***_{** *e***_{ e**_{** **e**_{** **e**}}}}} Expanding the Lagrangian

 $D_\mu \phi^\ast D^\mu \phi - m^2 \phi^\ast \phi \;\;$ invariant under local U(1) transformations Ω

 $\left[D_\mu \phi^* D^\mu \phi - m^2 \phi^* \phi = \partial_\mu \phi^* \partial^\mu \phi + i A^\mu (\phi \partial_\mu \phi^* - \phi^* \partial_\mu \phi) + \phi^* \phi A_\mu A^\mu - m^2 \phi^* \phi \right]$

instructive to take a short-cut and prove Eq. (2.13) instead. The reason is that the reas

ⁱ@*µ*↵(*x*)*eⁱ*↵(*x*)

- \bullet Demand symmetry \rightarrow Generate interactions • Demand symmetry \rightarrow Generate interactions
	- Generated mass for gauge boson (after ϕ acquires a vacuum expectation value)
		- plicit mass term forbidden by gauge symmetry (although otherwise allowed). *•* Explicit mass term forbidden by gauge symmetry (although otherwise allowed):

 $m^2 A_\mu A^\mu \rightarrow m^2 (A_\mu - \partial_\mu \alpha) (A_\mu - \partial_\mu \alpha) \neq m^2 A_\mu A^\mu$

- \bullet Simplest form of Higgs mechanism
- ${\color{red} \bullet} \ \ \text{Vector-scalar-scalar interaction}$

Local gauge invariance Non-Abelian gauge symmetry **• Philadelian symmetry by by** Delian symmetry

$$
D_{\mu} = \partial_{\mu} + igA_{\mu}^{a}T_{R}^{a}
$$

Conjecture

- All fundamental internal symmetries are gauge symmetries. See also the discussion in Schwartz!
- Global symmetries are just "accidental" and not exact.

Spontaneous Symmetry Breaking

The Higgs mechanism

- The Higgs potential: $V = \mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2$
- Vacuum = Ground state = Minimum of V:
- If $\mu^{2}>0$ (massive particle): $\Phi_{\min}=0$ (no symmetry breaking)

- If $\mu^{2} < 0$: $\phi_{\min} = \pm v = \pm (-\mu^{2}/\lambda)^{1/2}$ These two minima in one dimension correspond to a continuum of minimum values in $SU(2)$. The point $\phi = 0$ is now instable.
- Choosing the minimum (e.g. at +v) gives the vacuum a preferred direction in isospin space \rightarrow spontaneous symmetry breaking
- Perform perturbation around the minimum

Higgs self-couplings

In the SM, the Higgs self-couplings are a consequence of the Higgs potential after expansion of the Higgs field $H \sim (1,2)$ ₁ around the vacuum expectation value which breaks the ew symmetry:

$$
V_H = \mu^2 H^{\dagger} H + \eta (H^{\dagger} H)^2 \rightarrow \frac{1}{2} m_h^2 h^2 + \left(\sqrt{\frac{\eta}{2}} m_h h^3 \right) + \left(\frac{\eta}{4} h^4 \right)
$$

with:

$$
m_h^2 = 2 \eta v^2 \, , \, v^2 = - \mu^2/\eta
$$

Note: $v=$ 246 GeV is fixed by the precision measures of GF

In order to completely reconstruct the Higgs potential, on has to:

• Measure the 3h-vertex: via a measurement of Higgs pair production

$$
\lambda^{\rm SM}_{3h}=\sqrt{\frac{\eta}{2}}m_h
$$

• Measure the 4h-vertex: more difficult, not accessible at the LHC in the high-lumi phase

One page summary of the world 2.1 One-page Summary of the World Summary of the Wo Gauge group **Page** :

Gauge group

Particle content $\text{SU}(3)_c \times \text{SU}(2)_L \times \text{U}(1)_Y$ \overline{a} $|c|$ $\frac{1}{2}$

Particle content

Lagrangian (Lorentz + gauge + renormalizable)

SSB

 $\frac{1}{2}$ (3*, 28, 11)* $\frac{1}{2}$ (5, 1) $\frac{1}{2}$ (5, 1) $\frac{1}{2}$ (7, 1) $\frac{1}{2}$ (7, 1) $\frac{1}{2}$ (7, 1) *dc ^R* (3*,* 1) ²*/*³ ⌫*^c ^R* (1*,* 1) ⁰ *G* (8*,* 1)⁰ $\mathcal{L}=-\frac{1}{4}% \sum_{i=1}^{3}\left[\frac{1}{\left[\Delta_{i}+\Delta_{i}+\Delta_{i}% \right] }\right] ^{i}$ 4 $G_{\mu\nu}^{\alpha}G^{\alpha\mu\nu}+\dots\overline{Q}_{k}\displaystyle{\not}D\!\!\!\!Q_{k}\!+\!\dots (D_{\mu}H)^{\dagger}(D^{\mu}H)\!-\!\mu^{2}H^{\dagger}H\!-\!\frac{\lambda}{4!}$ $\frac{\Lambda}{4!} (H^{\dagger}H)^2 + \ldots Y_{k\ell} \overline{Q}_k H(u_R)_{\ell}$ $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ for $\frac{1}{\sqrt{2}}$ for $\frac{1}{\sqrt{2}}$ for $\frac{1}{\sqrt{2}}$ $4^{\mathcal{O}_{\mu\nu}\mathcal{O}}$ \cdots $\mathcal{C}_k \mathcal{P} \mathcal{C}_k \cdots$ $\mathcal{D}_{\mu} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D}$ *p H H* **L** = 1
 L = 1
 L = 1 (*D^µH*)*µ*² *^H* 4!(*H†* +*...Yk*`*QkH*(*uR*)` Spontaneous symmetry breaking

 $\sqrt{2}$ \sqrt{v} \mathcal{S} symmetry breaking break $\sqrt{2}$ $H \rightarrow H' + 1$ $\sqrt{6}$ 0 $\bullet\ \ H\rightarrow H'+\frac{1}{\surd2}$ 2 $\sqrt{0}$ \overline{v} ◆

• H ! *H*⁰ + ^p

 \bullet $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ • $\text{SU}(2)_L \times \text{U}(1)_Y \to \text{U}(1)_Q$

2

v

Matter Higgs Gauge

+*...Yk*`*QkH*(*uR*)`

- \mathbb{Z}^D \mathbb{Z}^1 \mathbb{Z}^1 \mathbb{Z}^0 and *µ, W*² • $B, W^3 \to \gamma, Z^0$ and $W^1_\mu, W^2_\mu \to W^+, W^-$
- *• P A*, *M*₂ *P <i>n***₂ ***w <i>n <i>x <i>n***₂** *w*** ***<i>n***₂** *w <i>n*₂ *m*₂ \mathbf{r}^{max} and \mathbf{r}^{max} couplings to \mathbf{r}^{max} *•* Fermions acquire mass through Yukawa couplings to Higgs

IV. From the SM to predictions at the LHC

Scattering theory **Scattering theory**

✦Cross sections can be calculated as

$$
\sigma = \frac{1}{F} \int \mathrm{d\mathrm{PS}}^{(n)} \overline{\left| M_{fi} \right|^2}
$$

✤ We integrate over all final state configurations (momenta, *etc*.). ★The phase space (dPS) only depend on the final state particle momenta and masses

★ Purely kinematical

✤We average over all initial state configurations

- ★ This is accounted for by the flux factor F
- ★ Purely kinematical
- ✤ The matrix element squared contains the physics model
	- ★ Can be calculated from **Feynman diagrams**
	- ★ Feynman diagrams can be drawn from the Lagrangian
	- ★ The Lagrangian contains all the model information (particles, interactions)

Cross section

The Lorentz-invariant phase space:
\n
$$
d\Phi_n = (2\pi)^4 \delta^{(4)}(p_a + p_b - \sum_{f=1}^n p_f) \prod_{f=1}^n \frac{d^3 p_f}{(2\pi)^3 2E_f}
$$

The flux factor:
$$
F = \sqrt{(p_a \cdot p_b)^2 - p_a^2 p_b^2}
$$

Decay width

The Lorentz-invariant phase space:
\n
$$
d\Phi_n = (2\pi)^4 \delta^{(4)}(p_a - \sum_{f=1}^n p_f) \prod_{f=1}^n \frac{d^3 p_f}{(2\pi)^3 2E_f}
$$

Rest frame of decaying particle: $E_a = M_a$

Life time and branching ratio

Branching ratio: $BR(i \rightarrow f) = \frac{\Gamma(i \rightarrow f)}{\Gamma(i \rightarrow all)}$ $\Gamma(i \to {\rm all})$

The model

✦ All the model information is included in the Lagrangian

✤Before electroweak symmetry breaking: very compact

$$
\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W_{\mu\nu}^i W_i^{\mu\nu} - \frac{1}{4} G_{\mu\nu}^a G_a^{\mu\nu}
$$

+
$$
\sum_{f=1}^3 \left[\bar{L}_f \left(i \gamma^\mu D_\mu \right) L^f + \bar{e}_{Rf} \left(i \gamma^\mu D_\mu \right) e_R^f \right]
$$

+
$$
\sum_{f=1}^3 \left[\bar{Q}_f \left(i \gamma^\mu D_\mu \right) Q^f + \bar{u}_{Rf} \left(i \gamma^\mu D_\mu \right) u_R^f + \bar{d}_{Rf} \left(i \gamma^\mu D_\mu \right) d_R^f \right]
$$

+
$$
D_\mu \varphi^\dagger D^\mu \varphi - V(\varphi)
$$

✤After electroweak symmetry breaking: quite large Example: electroweak boson interactions with the Higgs boson:

$$
D_{\mu}\varphi^{\dagger} D^{\mu}\varphi = \frac{1}{2}\partial_{\mu}h\partial^{\mu}h + \frac{e^{2}v^{2}}{4\sin^{2}\theta_{w}}W_{\mu}^{+}W^{-\mu} + \frac{e^{2}v^{2}}{8\sin^{2}\theta_{w}\cos^{2}\theta_{w}}Z_{\mu}Z^{\mu}
$$

$$
+ \frac{e^{2}v}{2\sin^{2}\theta_{w}}W_{\mu}^{+}W^{-\mu}h + \frac{e^{2}v}{4\sin^{2}\theta_{w}\cos^{2}\theta_{w}}Z_{\mu}Z^{\mu}h + \frac{e^{2}}{4\sin^{2}\theta_{w}}W_{\mu}^{+}W^{-\mu}hh + \frac{e^{2}}{8\sin^{2}\theta_{w}\cos^{2}\theta_{w}}Z_{\mu}Z^{\mu}hh.
$$

Feynman diagrams and Feynman rules I

✦ The Feymman rules are the building blocks to construct Feynman diagrams

Loop diagrams

two interactions

four interactions

Loops exist, $\frac{1}{\sqrt{2}}$ contribution is often small neglected and the control of the co
The control of the c Loops exist, but their contribution is often small

Feynman diagrams and Feynman rules II

Feynman rules for the Standard Model Feynman Rules!

blocks necessary to blocks necessary to $\frac{1}{2}$ and $\frac{1}{2}$ or $\frac{1}{2}$ and $\frac{1}{2}$ Almost all the building draw any SM diagrams

QCD coupling much stronger than QED coupling → dominant diagrams → dominant diagrams

Drawing Feynman diagrams I

Drawing Feynman diagrams II

✦ Find out the dominant diagrams for

$$
\textcolor{red}{\textbf{? Process 1.}}~gg \rightarrow t\bar{t}
$$

❖ Process 2. $gg\to t\bar{t}h$

✤ Process 3. $u\bar{u} \rightarrow t\bar{t}$ *b*^{\bar{b}}

What is the QCD/QED order? (keep only the dominant diagrams)

MadGraph5_aMC@NLO

• Check your answer online:

```
MadGraph5_aMC@NLOwebpage
```
• Requires registration

Web process syntax

MadGraph output

✦ User requests a process

✤ g g > t t~ b b~ ✤ u d~ > w+ z, w+ > e+ ve, z > b b~ → etc.

3

6

5

✦ MADGRAPH returns:

- ✤ Feynman diagrams
- ❖ Self-contained Fortran code for $|M_{fi}|^2$

✦Still needed:

- ✤What to do with a Fortran code?
- ✤ How to deal with hadron colliders?

Proton-Proton collisions I

✦The master formula for hadron colliders

$$
\sigma = \frac{1}{F} \sum_{ab} \int d\text{PS}^{(n)} dx_a \ dx_b \ f_{a/p}(x_a) \ f_{b/p}(x_b) \overline{|M_{fi}|^2}
$$

✤We sum over all proton constituents (*a* and *b* here)

✤We include the parton densities (the *f*-function)

They represent the probability of having a parton *a* inside the proton carrying a fraction *xa* of the proton momentum

 X

light quark sea, strange sea

 $\mathsf{X}% _{0}$

light quark sea, strange sea

Altarelli-Parisi evolution equations

Altarelli-Parisi evolution equations

Altarelli-Parisi evolution equations

 $\mathsf{X}% _{0}$

Altarelli-Parisi evolution equations

Proton-Proton collisions II

✦ This is not the end of the story...

- ✤ At high energies, initial and final state quarks and gluons radiate other quark and gluons
- ✤ The radiated partons radiate themselves
- ✤ And so on...
- ✤ Radiated partons hadronize
- ✤ We observe hadrons in detectors

Input parameters

- In order to make predictions, the input parameters have to be fixed! Most importantly the coupling constants
- For N parameters need N measurements
	- $\alpha_s = 0.5$? or 0.118? Need to consider running couplings, i.e., take into account loop effects! Otherwise very rough predictions!
	- $\alpha = 1/137 \sim 0.007$ or $1/127 \sim 0.008$?
	- etc.