(B)SM and the LHC

I. Schienbein U Grenoble Alpes/LPSC Grenoble

Summer School in Particle and Astroparticle physics Annecy-le-Vieux, 19-26 July 2022

V. Beyond the SM

The Beautiful SM

- \bullet QFT = QM + SR
- Matter content: 3 generations of
 - Quarks (u,d),(s,c),(b,t)
 - Leptons $(e, V_e), (\mu, V_{\mu}), (T, V_T)$
- local gauge symmetry $SU(3)_c \times SU(2)_L \times U(1)_Y$
 - 8 gluons, W+, W-, Z, Photon
- Renormalizability
- Electroweak symmetry breaking (EWSB)
 - Higgs boson

The Higgs boson

- The/A Higgs boson has been discovered at the LHC in 2012 [ATLAS, PLB716(2012)1; CMS, PLB716(2012)716]
- All results are coherent with the expectations of the SM:
 - Spin = 0 [PLB726(2013)120]
 - P=+1, C=+1, CP=+1 [PRD92(2015)012004]
 - Couplings to the vector bosons (\mathbb{Z} , \mathbb{W} , \mathbb{Y} , \mathbb{g}) and to the fermions (\mathbb{t} , \mathbb{b} , $\mathbb{\tau}$) in agreement at ~30% precision
- Still to be measured are the selfcouplings of the Higgs boson

Crucial to test the mecanism of EWSB!

[ATLAS-CONF-2015-044]

The Higgs boson: 10 years after discovery

The Succesful SM

- All the elementary matter particles (quarks, charged leptons, neutrinos) postulated by the SM have been discovered
- All the gauge bosons (gluons, W+, W-, Z, photon) predicted by the SU(3)_cxSU(2)_LxU(1)_Y gauge symmetry have been discovered
- A spin-0 particle compatible with the SM Higgs boson has been discovered
- No other particles have been found (so far)
- The SM is the best-tested theory in the history of science!

A very large number of precision measurements have been compared to SM computations at the (multi-)loop level and no solid evidence for BSM physics has emerged (neither in direct searches nor indirectly due to loop effects)

CKM angles

running α_{S}

top and W mass

EW parameters Measurement IOmeas-Ofit I/omeas 0.02758 ± 0.00035 0.02767 m₇ [GeV] 91.1875 ± 0.0021 91.1874 Γ_7 [GeV] 2.4952 ± 0.0023 2.4959 $\sigma_{\rm had}^{\overline{0}}$ [nb] 41.540 ± 0.037 41.478 20.767 ± 0.025 20.742 $0.01714 \pm 0.00095 \ 0.01643$ $A_I(P_{\tau})$ 0.1465 ± 0.0032 0.1480 0.21629 ± 0.00066 0.21579 0.1721 ± 0.0030 0.1723 0.0992 ± 0.0016 0.1038 0.0707 ± 0.0035 0.0742 0.923 ± 0.020 0.935 0.670 ± 0.027 0.668 A_i(SLD) 0.1513 ± 0.0021 0.1480 $\sin^2 \theta_{eff}^{lept}(Q_{fb})$ 0.2324 ± 0.0012 0.2314 mw [GeV] 80.410 ± 0.032 80.377 Γ_{w} [GeV] 2.092 2.123 ± 0.067 m_t [GeV] 172.7 ± 2.9 173.3 0 2

Z⁰ width

anom. magnetic moment (g-2)

Higgs effective potential

self-consistency of SM: the Higgs-Top miracle

- consider self coupling of Higgs $\lambda(t)$ (from $\lambda/2(\varphi^{\dagger}\varphi)^2$) with $t=\ln\Lambda^2/Q_0^2$
- coupling runs:

• if λ term dominant, i.e. large Higgs mass $\dot{\lambda} \sim \lambda^2 \rightarrow \text{triviality/perturbativity bound}$:

$$\lambda(\Lambda) = \frac{\lambda(Q_0)}{1 - 3/(4\pi^2) \lambda(Q_0) t}$$

$$\implies 2\lambda(v)v^2 = M_H^2 < \frac{8\pi^2 v^2}{3\ln(\Lambda^2/v^2)}$$

Higgs effective potential

self-consistency of SM: the Higgs-Top miracle plot: [Spencer-Smith. 1405.1975]

ullet if y_t term dominant i.e. large top mass $\dot{\lambda} \sim -y_t^4$

• vacuum stability:
$$\lambda(\Lambda) = \lambda(Q_0) - \frac{3}{4\pi^2} \, y_t^4 \, t \, \stackrel{!}{>} \, 0 \implies M_H^2 > \frac{3 \, v^4 \, y_t^4}{2\pi^2 v^2} \ln \frac{\Lambda^2}{v^2}$$

• for $M_H \sim 125~{
m GeV}$ and $M_t \sim 173~{
m GeV}$ the SM seems to be consistent up to very high energies $\Lambda_{
m UV} \sim 10^9-10^{14}~{
m GeV}$ is this a coincidence ??

But there are also problems...

Observational problems

- Problems on the 'earth'
 - It is by now well-established that neutrinos oscillate which is only possible if at least two neutrinos are massive.
 Now, in the <u>original</u> SM, neutrinos are massless particles...
 - There are b-flavor anomalies and tensions in the anomalous magnetic moment of the muon (D. Guadagnoli's lecture)
- Problems in the 'sky'
 - The SM does not provide a candidate for **Dark Matter** (if DM is made of particles!)
 - The amount of CP-violation in the SM is <u>not sufficient</u> to explain the **matter-antimatter asymmetry** in the universe/ baryon asymmetry of the universe (BAU)

Neutrinos and the Standard Model

- Neutrino oscillations:
 - at least two massive neutrino states
 - why should neutrinos be massless anyway? (no symmetry)
- In the original SM, neutrinos are massless
 ⇒ oscillation results = physics beyond the SM
- However, massive neutrinos possible by a minimal extension of the SM:
 - right-handed neutrino
 - gauge singlet ("sterile neutrino")
 - can be a Dirac fermion like the electron
 - * mass term via Yukawa interaction with Higgs boson (Higgs mechanism)
 - neutrino masses of order meV: tiny(!) Yukawa couplings

Particles	Spin	SU(3) _C	$SU(2)_L$	$U(1)_Y$
$Q = \begin{pmatrix} u_L \\ d_I \end{pmatrix}$	1/2	3	2	<u>1</u> 3
u_R^c d_R^c	$\frac{1}{2}$	$\frac{\overline{3}}{3}$	1 1	$-\frac{4}{3}$ $\frac{2}{3}$
$L = \begin{pmatrix} \nu_L \\ e_I \end{pmatrix}$	$\frac{1}{2}$	1	2	-1
ν_R^c	$\frac{1}{2}$	1	1	0
e_R^c	$\frac{1}{2}$	1	1	2
$H = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix}$	0	1	2	1
G^lpha_μ	1	8	1	0
W_{μ}^{a}	1	1	3	0
$B_{\mu}^{'}$	1	1	1	0

Neutrinos and the Standard Model

- Neutrino oscillations:
 - at least two massive neutrino states
 - why should neutrinos be massless anyway? (no symmetry)
- In the original SM, neutrinos are massless
 ⇒ oscillation results = physics beyond the SM
- Conversely, neutrino only fermion in the SM without electric charge:
 - riangleright can be its own anti-particle (like γ , Z⁰, π⁰, η)
 - it's called Majorana-Neutrino (V^M) if it is its own anti-particle: $V^M = (V^M)^c$
 - **non-minimal** extension of the SM:
 - ★ mass term in ℒ can be a gauge singlet
 ⇒ heavy mass term possible
 [not related to the Higgs mechanism]
 - * seesaw mechanism can explain tiny masses

Particles	Spin	SU(3) _C	$SU(2)_L$	$U(1)_Y$
$Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	1/2	3	2	<u>1</u> 3
u_R^c d_R^c	$\begin{array}{c c} \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{\overline{3}}{3}$	1 1	$-\frac{4}{3}$ $\frac{2}{3}$
$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$\frac{1}{2}$	1	2	-1
ν_R^c	$\frac{1}{2}$	1	1	0
e_R^c	$\frac{1}{2}$	1	1	2
$H = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix}$	0	1	2	1
G^lpha_μ	1	8	1	0
W_{μ}^{a}	1	1	3	0
$B_{\mu}^{'}$	1	1	1	0

Neutrinos and the Standard Model

Why the neutrino mass is so small?

$$\left(\frac{m(v_3)}{m(top\ quark)}\right) \approx \left(\frac{1}{3 \times 10^{12}}\right)$$

See-saw mechanism

Minkowsky, Yanagida, Gell-mann, Ramond, Slansky

$$m_{_{V}} \approx \frac{m_{_{q}}^{^{2}}}{m_{_{N}}}$$
 If we input $m_{_{V3}}$ and $m_{_{q}}$ ($m_{_{top}}$ is used), we get $m_{_{N}}$ = 10¹⁵ GeV

This suggests that physics of neutrino mass could be related to physics of Grand Unification!

The SM with massive neutrinos

26

(i) Too many free parameters

Gauge sector: 3 couplings g' , g , g_3		
Quark sector: 6 masses, 3 mixing angles, 1 CP phase	10	
Lepton sector: 6 masses, 3 mixing angles and 1-3 phases		
Higgs sector: Quartic coupling λ and vev v		
heta parameter of QCD		

(ii) Structure of gauge symmetry

 $\mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y \stackrel{?}{\subset} \mathrm{SU}(5) \stackrel{?}{\subset} \mathrm{SO}(10) \stackrel{?}{\subset} \mathrm{E}_6 \stackrel{?}{\subset} \mathrm{E}_8$

Why 3 different coupling constants g', g, g_3 ?

(iii) Structure of family multiplets

$$(3,2)_{1/3} + (\overline{3},1)_{-4/3} + (1,1)_{-2} + (\overline{3},1)_{2/3} + (1,2)_{-1} + (1,1)_{0} \stackrel{?}{=} 16$$
 $Q \quad \bar{u} \quad \bar{e} \quad \bar{d} \quad L \quad \bar{\nu}$

Particles	Spin	SU(3) _C	$SU(2)_L$	$U(1)_Y$
$Q = \begin{pmatrix} u_L \\ d_I \end{pmatrix}$	1/2	3	2	<u>1</u> 3
u_R^c d_R^c	$\begin{array}{c c} \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{\overline{3}}{3}$	1 1	$-\frac{4}{3}$ $\frac{2}{3}$
$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$\frac{1}{2}$	1	2	-1
ν_R^c	$\frac{1}{2}$	1	1	0
e_R^c	$\frac{1}{2}$	1	1	2
$H = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix}$	0	1	2	1
G^lpha_μ	1	8	1	0
W_{μ}^{a}	1	1	3	0
$B_{\mu}^{'}$	1	1	1	0

Fits nicely into the 16-plet of SO(10)

Conceptual 'problems'

- The SM is 'only' an **effective theory**, it doesn't explain everything...
- effective theory means: the SM is valid up to a scale Λ_{UV}
- Gravity not included, therefore $\Lambda_{UV} < M_{Pl} \sim 10^{19}$ GeV because at the Planck scale gravity effects have to be included
- Error of predictions at **energy scale E**: $O[(E/\Lambda_{UV})^n]$ where n = 1,2,3,4,... depending on the truncation of the effective theory
- Renormalisability is <u>not</u> considered a fundamental principle anymore, non-renormalisable operators of dimension 5,6,... can be included to reduce the theory error
- Systematic approach but <u>involved</u> due to a large number of possible operators (global analysis required)

Higher dimensional ops:

the Standard Model

input: Poincare symmetry

gauge symmetry, group $SU(3) \times SU(2) \times U(1)$: $G^{\mu\nu}$, $W^{\mu\nu}$, $B^{\mu\nu}$

3 families of matter fields (in fundamental or trivial representation):

$$\ell_L = \left(egin{array}{c}
u_L \ e_L \end{array}
ight)$$
 , $q_L = \left(egin{array}{c} u_L \ d_L \end{array}
ight)$, e_R , u_R , d_R

one scalar doublet φ

output: most general, Lorentz and gauge invariant Lagrangian

we have 1 operator of dim 2, a few (~ 15) of dim 4, 1 of dim 5, quite a few (~ 60) of dim 6 and many of dim 8 and higher

renormalizability requires (mass) dimension of operators $Dim \leq 4$

Note: we must have $[\mathcal{L}]=4$ since $[\int d^4x \,\mathcal{L}]=0$

Thus for a dim 6 operator $O^{(6)}$ we have $\mathcal{L}\ni \frac{c^{(6)}}{\Lambda_{\mathrm{UV}}^2}O^{(6)}$ with Λ_{UV} a scale (of BSM physics)

Philosophy corner:

- Do you think there exists something like a fundamental theory of everything? (free of input parameters, explaining everything)
- Or is any theory "effective" valid in a given energy range?
- The principle of renormalisability was very predictive and successful. Maybe there is more to it? Or is this just an accident?
- Reminder: number of parameters and predictivity

No matter how you define what a physical theory is. It has to be something making **predictions** for **observables**!

Conceptual 'problems'

- Any effective theory has input parameters which are not explained by it.
- To explain the input parameters one would need a more 'fundamental/microscopic' theory from which to derive the effective theory
- The SM has 19 input parameters/26 with massive neutrinos (make a list!)
 - The masses of the SM fermions cover roughly I I (!) orders of magnitude
 - The mixing of quarks is quite different from the mixing of leptons
 - This bizarre pattern of mass and mixing input parameters is called the 'flavor puzzle'.

It is not a problem (an effective theory doesn't say anything about the input) but it is nevertheless a puzzle...

Just to illustrate how bizarre the spectrum of the SM fermion masses is

and

how different the mixing in the quark and lepton sector is

a few slides on the so called 'flavor puzzle'

The charged fermion masses are very hierarchical, extending over 5 orders of magnitude

Things get even worse when we include neutrino masses!

12 ...14 orders of magnitude!

Why the neutrino mass is so small?

$$\left(\frac{m(v_3)}{m(top\ quark)}\right) \approx \left(\frac{1}{3 \times 10^{12}}\right)$$

See-saw mechanism

Minkowsky, Yanagida, Gell-mann, Ramond, Slansky

This suggests that physics of neutrino mass could be related to physics of Grand Unification!

Quark and Lepton mixing parameters are quite different!

Quark Mixings

$$V_{CKM} \sim \begin{bmatrix} 0.976 & 0.22 & 0.004 \\ -0.22 & 0.98 & 0.04 \\ 0.007 & -0.04 & 1 \end{bmatrix}$$

Leptonic Mixings

$$V_{CKM} \sim egin{bmatrix} 0.976 & 0.22 & 0.004 \ -0.22 & 0.98 & 0.04 \ 0.007 & -0.04 & 1 \end{bmatrix} \quad U_{PMNS} \sim egin{bmatrix} 0.85 & -0.54 & 0.16 \ 0.33 & 0.62 & -0.72 \ -0.40 & -0.59 & -0.70 \end{bmatrix}$$

Attempts to explain the flavor puzzle:

- Unified symmetries SU(5), SO(10), E_6 , Pati-Salam symmetry, Left-right symmetry, $[SU(3)]^3$,...
- Flavor symmetries
 Frogatt-Nielsen mechanism, Anomalous U(1), discrete Abelian or non-Abelian symmetries, continuous gauge symmetries,...
- Radiative generation of fermion masses

```
Georgi, Glashow (1973), Barr, Zee (1977); Zee (1980), Balakrishna, Kagan, Mohapatra (1987), Babu, Mohapatra (1990), Ma (1990), Nilles, Olechowski, Pokorski (1990), He, Volkas, Wu (1990), Dobrescu, Fox (2008), Kowanacki, Ma (2016), ...
```

Extra dimensional geography

Arkani-Hamed, Schmaltz (2000), Agashe, Okui, Sundrum (2009),...

Conceptual 'problems'

- Electroweak Symmetry Breaking (EWSB)
 - SM Higgs mechanism 'ad hoc'
 - Hierarchy problem: Why $M_{ew} << \Lambda_{UV}$?
 - Naturalness problem: Why $M_h << \Lambda_{UV}$?

A fundamental scalar is problematic! Its mass is not protected from large radiative corrections by any symmetry.

Possible solutions

- Fine-tuning, anthropic principle, multiverse
- A symmetry protecting the scalar: Supersymmetry at the TeV-scale
- The scalar is not fundamental: Compositeness at the TeV-scale
- Large extra-dimensions at the TeV-scale
- New principles/laws of Nature (MPP, Asymptotic Safety)

Conceptual 'problems'

- All operators allowed by all symmetries should appear in the Lagrangian; if absent at tree level, these operators are generated at the loop level in any case
- Theorists prejudice: naturally, the coefficients of the operators are of
 O(I) unless there is
 - a (broken) symmetry
 - the operator is loop-suppressed
- Strong CP problem:

There is an allowed term in the QCD Lagrangian (renormalisable, gauge invariant) which violates P,T, CP

Its coefficient is extremly suppressed (or zero). There is only an upper limit... WHY?

What is Λ_{UV} ?

- Despite the phenomenal success of the SM, it is not the theory of everything (if this exists at all)
- The SM is 'only' an effective theory valid up to a scale Λ_{UV}
- What is Λ_{UV} ?
 - gravity not part of SM: $\Lambda_{UV} < M_{Pl} \sim 10^{19} \text{ GeV}$
 - dark energy not part of SM: $\Lambda_{UV} = ??$
 - dark matter, matter-antimatter asymmetry: $\Lambda_{UV} = ??$
 - strong CP problem: $\Lambda_{UV} \sim 10^{10} \text{ GeV}$
 - neutrino masses (seesaw): $\Lambda_{UV} \sim 10^{10} \dots 10^{15} \text{ GeV}$
 - hierarchy problem: $\Lambda_{UV} \sim \Lambda_{EW}$ (new physics at LHC)

Aestethics, Symmetry, Religion

- Gauge symmetry $SU(3) \times SU(2) \times U(1)$
 - not a simple group
 - left-right asymmetric (maximal parity violation)
- Matter content in different representations
 - left vs right, quarks vs leptons
- Why three generations? (Why three space dimensions?) ("Who has ordered this?" Rabi after muon discovery)
- Wouldn't it be a revelation to have complete unification?
 - one simple gauge group = one interaction
 - one representation for all matter = one matter type/one primary substance

Attractive features of GUTs

K. S. Babu, S. Khan, I 507.06712

- Gauge coupling unification
- Explanation for quantization of electric charges

(Some) GUT group candidates

- $G_{SM} = SU(3) \times SU(2) \times U(1)$
 - $rank[G_{SM}] = rank[SU(3)] + rank[SU(2)] + rank[U(1)] = 2 + 1 + 1 = 4$
 - \bullet G_{SM} < G, where G is the gauge group of the GUT theory
 - $rank[G_{SM}] \leq rank[G]$
- Rank 4:
 - SU(5) unique rank 4 candidate: 5+10
 - \bullet no ν_R , no B-L symmetry
- Rank 5:
 - SO(10): 16-plet
 - Pati-Salam group $G(442) = SU(4)_c \times SU(2)_L \times SU(2)$
- Rank 6:
 - E₆
 - Trinification [SU(3)]³

Breaking patterns and branching rules

Breaking patterns:

- $SU(5) \rightarrow G_{SM} \rightarrow SU(3)_c \times U(1)_{em}$
- $SO(10) \rightarrow SU(5) \rightarrow G_{SM} \rightarrow SU(3)_c \times U(1)_{em}$
- \bullet SO(10) \rightarrow G(442) \rightarrow G_{SM} \rightarrow SU(3)_c x U(1)_{em}
- \bullet E₆ \rightarrow SO(10) \rightarrow ...
- There are two aspects:
 - a) What are the subgroups of G with equal or lower rank?
 - b) Which Higgs fields are needed for the symmetry breaking?

Branching rules:

How does a multiplet of G split up into multiplets of G_{SM} after symmetry breaking?

• Example SU(5) \rightarrow G_{SM}: 5 \rightarrow (3,1)_{2/5} + (1,2)_{-3/5}

There are also open questions in QCD!
The frontier of particle physics is not just
Higgs and BSM physics...

QCD under extreme conditions

Understanding the dynamics of the strong interaction under extreme conditions of temperature and density

The QCD phase diagram connects to

- Cosmology -> Evolution of the early universe
- Compact stars at high netbaryon density
- Strongly coupled quantum fluids

GSI Helmholtzzentrum für Schwerionenforschung

Connect first principles QCD calculations with experimental observables via a realistic modeling of heavy ion collisions and astrophysical events

Key questions in QCD and hadronic physics

• What is our degree of understanding of QCD?

- How precisely do we know the parameters of QCD?
- What is the origin and the dynamics of confinement?
- What is the origin and the dynamics of chiral symmetry breaking?

• What is the structure of hadrons in terms of quarks and gluons?

- Which hadrons are there? How do they decay?
- How does the hadron mass arise in terms of its constituents?
- How are the quarks and gluons distributed inside the hadron?
- How does the hadron spin arise in terms of its constituents?
- What is the structure of nuclei in terms of quarks and gluons?
- What is the role of quarks and gluons in matter under extreme conditions?
 - How does the QCD phase diagram look like? Existence of a phase transition with critical end point? Dof in the core of compact stars? Color super conductor phase?
 - What are the properties of the QGP?