physics (experimental)

Roberto Covarelli

(experimental) LHC physics

Experiment $=$ probing/building theories with data!

 $-\frac{\imath}{4} \partial_\nu g^a_\mu \partial_\nu g^a_\mu -g_s f^{abc} \partial_\mu g^a_\nu g^b_\mu g^c_\nu -\frac{\imath}{4} g^2_s f^{abc} f^{ade} g^a_\mu g^c_\nu g^a_\mu g^e_\nu +\qquad \qquad$ $\label{eq:3.10} \begin{array}{cc} \frac{2}{2} \gamma^{\nu\mu} \gamma^{\nu\nu\mu} \gamma^{\nu\sigma\mu} & \frac{2}{2} \gamma^{\mu\sigma\mu} \gamma^{\mu\sigma\nu} \gamma^{\mu\sigma\nu}$ $\label{eq:21} M^2W^+_\mu W^-_\mu -\tfrac{1}{2}\partial_\nu Z^0_\mu\partial_\nu Z^0_\mu -\tfrac{1}{2c_w^2}M^2Z^0_\mu Z^0_\mu -\tfrac{1}{2}\partial_\mu A_\nu\partial_\mu A_\nu -\tfrac{1}{2}\partial_\mu H\partial_\mu H \frac{1}{2}m_h^2H^2-\partial_\mu\phi^+\partial_\mu\phi^--M^2\phi^+\phi^--\frac{1}{2}\partial_\mu\phi^0\partial_\mu\phi^0-\frac{1}{2c_w^2}M\phi^0\phi^0-\beta_h[\frac{2M^2}{g^2}+$ $\frac{2\frac{M}{\theta}H+\frac{1}{2}(H^2+\phi^0\phi^0+2\phi^+\phi^-)]+\frac{2\frac{M^4}{\theta^2}\alpha_h-igc_w[\partial_\nu Z^0_\mu(W_\mu^+W_\nu^-} \cdot$ $\frac{g}{\left(W_{\nu}^{+}W_{\mu}^{-}\right)} = \frac{g}{W_{\nu}^{+}W_{\mu}^{-}} = \frac{g}{W_{\mu}^{+}} \frac{g}{\partial_{\nu}W_{\mu}^{+}} + \frac{g}{Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-})} - \frac{g}{W_{\nu}^{+}W_{\mu}^{-}} = \frac{g}{W_{\nu}^{+}W_{\nu}^{-}} = \frac{g}{W_{\nu}^{+}W_{\nu}^{-}} = \frac{g}{W_{\nu}^{+}W_{\mu}^{-}} = \frac{g}{W_{\nu}^{+}W_{\mu}^{-}}$ $W^-_\mu \partial_\nu W^+_\mu) + A_\mu (W^+_\nu \partial_\nu W^-_\mu - W^-_\nu \partial_\nu W^+_\mu)] - \tfrac{1}{2} g^2 W^+_\mu W^-_\mu W^+_\nu W^-_\nu +$ $g^2s_w^2(A_\mu W_\mu^+A_\nu W_\nu^--A_\mu A_\mu W_\nu^+W_\nu^-)+g^2s_wc_w[A_\mu Z_\nu^0(W_\mu^+W_\nu^-)$ $W_{\nu}^{+}W_{\mu}^{-}\big) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}\big] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] \frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2] \tau^{\alpha h|H} \tau^{\left(\varphi\right)}_{\alpha\beta} \tau^{\gamma\rightarrow\left(\varphi\right)}_{\mu} \tau^{\gamma\rightarrow\left(\varphi\right)}_{\alpha\beta} Z^0_{\mu} Z^0_{\mu} A^0_{\mu} + \frac{1}{2} i g[W^+_\mu (\phi^0 \partial_\mu \phi^- - \phi^- \partial_\mu \phi^0) - gMW^+_\mu W^-_\mu H - \frac{1}{2} g^{M}_{\alpha\beta} Z^0_{\mu} H - \frac{1}{2} i g[W^+_\mu (\phi^0 \partial_\mu \phi^- - \phi^- \partial_\mu \phi^0) - gWW^-_\mu H]$ $\phi^+\partial_\mu H)]+\tfrac{1}{2}g\tfrac{1}{c_w}(Z^0_\mu(H\partial_\mu\phi^0-\phi^0\partial_\mu H)-ig\tfrac{s_w^2}{c_w}MZ^0_\mu(W_\mu^+\phi^--W_\mu^-\phi^+)+$ $\omega_{\mu}\omega_{\mu\tau}\gamma^{\tau}\gamma^{\tau}\omega_{\mu\mu}\omega_{\mu\tau}\omega_{\mu\tau}^{\nu\tau} -\omega_{\mu\tau}\omega^{\tau}\omega_{\mu\tau}^{\nu\tau}\omega_{\mu\tau}^{\nu\tau}\omega_{\mu\tau}^{\nu\tau}\omega_{\mu\tau}^{\nu\tau}\omega_{\mu\tau}^{\nu\tau}\omega_{\mu\tau}^{\nu\tau}\omega_{\mu\tau}^{\nu\tau}\omega_{\mu\tau}^{\nu\tau}\omega_{\mu\tau}^{\nu\tau}\omega_{\mu\tau}^{\nu\tau}\omega_{\mu\tau}^{\nu\tau}\omega_{\mu\tau}^{\nu\tau}\$ $ig_{sw}A_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) - \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-]-\frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^-+$ $W^-_\mu \phi^+ \big) - \tfrac{1}{2} i g^2 \tfrac{s^2_\nu}{c_w} Z^0_\mu H (W^+_\mu \phi^- - W^-_\mu \phi^+) + \tfrac{1}{2} g^2 s_w A_\mu \phi^0 (W^+_\mu \phi^- +$ $W^-_\mu \phi^+ \big) + \tfrac{1}{2} i g^2 s_w A_\mu H \big(W^+_\mu \phi^- - W^-_\mu \phi^+ \big) - g^2 \tfrac{\tfrac{\mu}{2} \phi^2}{c_w} \big(2 c_w^2 - 1 \big) Z^0_\mu A_\mu \phi^+ \phi^- \int\limits_{\mathbb{R}^1}^{\mu}\int\limits_{\mathbb{R}^2} \frac{e^{-\mu}\partial_t\mathbb{P}^{u}}{\partial\mu}\int\limits_{\mathbb{R}^2} \frac{e^{-\mu}\partial_t\mathbb{P}^{u}}{\partial\mu}\int\limits_{\mathbb{R}^2} \frac{e^{-\mu}\partial_t\mathbb{P}^{u}}{\partial\mu}\int\limits_{\mathbb{R}^2} \frac{e^{-\mu}\partial_t\mathbb{P}^{u}}{\partial\mu}\int\limits_{\mathbb{R}^2} \frac{e^{-\mu}\partial_t\mathbb{P}^{u}}{\partial\mu}\int\limits_{\mathbb{R}^2} \frac{e$ $\label{eq:11} \bar{d}_{\hat{j}}^{\gamma}(\gamma\partial+m_{d}^{\gamma})d_{j}^{\gamma}+ig s_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda})+\frac{i}{3}(\bar{u}_{j}^{\lambda}\gamma^{\mu}u_{j}^{\lambda})-\frac{1}{3}(\bar{d}_{j}^{\gamma}\gamma^{\mu}d_{j}^{\lambda})]+$ $\frac{3}{4c_w}Z^0_k[(\bar{\nu}^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda)+(\bar{e}^\lambda\gamma^\mu(4s_w^2-1-\gamma^5)\bar{e}^\lambda)+(\bar{u}_j^\lambda\gamma^\mu(\tfrac{4}{3}s_w^2-\tfrac{3}{4c_w})^2)]$ $\frac{4c_w}{1-\gamma^5)u_j^\lambda\big)+\big(\bar d_j^\lambda\gamma^\mu(1-\frac{8}{3}s_w^2-\gamma^5)d_j^\lambda\big)\big]+\frac{i g}{2\sqrt{2}}W^+_\mu\big[(\bar\nu^\lambda\gamma^\mu(1+\gamma^5)\bar X^\lambda\big)+$ $(\bar{u}_j^{\lambda}\gamma^{\mu}(1+\gamma^5)C_{\lambda\kappa}d_j^{\kappa})]+\frac{i g}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})+(\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})]$ $\gamma^5) u^\lambda_j]] + \tfrac{i g}{2\sqrt{2}}\tfrac{m^\lambda_k}{M} [- \phi^+(\bar\nu^\lambda(1-\gamma^5)e^\lambda) + \phi^-(\bar e^\lambda(1+\gamma^5)\nu^\lambda)] \tfrac{q}{2}\tfrac{m^{\lambda}_c}{M}[H(\bar{e}^{\lambda}e^{\lambda})+i\phi^0(\bar{e}^{\lambda}\gamma^5 e^{\lambda})]+\tfrac{iq}{2M\sqrt{2}}\phi^+[-m^{\kappa}_d(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d^{\kappa}_j)+$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa})+\frac{i g}{2M\sqrt{2}}\phi^{-}\big[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})-m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa})\big]$ $\gamma^5)u_j^\kappa]-\tfrac{q}{2}\tfrac{m_\lambda^\lambda}{M}H\big(\bar{u}_j^\lambda u_j^\lambda\big)-\tfrac{q}{2}\tfrac{m_\lambda^\lambda}{M}H\big(\bar{d}_j^\lambda d_j^\lambda\big)+\tfrac{ig}{2}\tfrac{m_\lambda^\lambda}{M}\phi^0\big(\bar{u}_j^\lambda\gamma^5u_j^\lambda\big) \frac{i g}{2} \frac{m_d^{\lambda}}{M} \phi^0 (\vec{d}_j^{\lambda} \gamma^5 d_j^{\lambda}) + X^+ (\partial^2 - M^2) X^+ + X^- (\partial^2 - M^2) X^- + X^0 (\partial^2 \frac{\frac{2}{M^2}}{\frac{k^2}{c_w^2}}\big)X^0+\bar{Y}\partial^2Y+igc_wW_\mu^+(\partial_\mu\bar{X}^0X^--\partial_\mu\bar{X}^+X^0)+ig s_wW_\mu^+(\partial_\mu\bar{Y}X^- \widetilde{\partial_{\mu}\bar{X}^+Y})+ig c_w W^-_{\mu}\big(\widetilde{\partial_{\mu}\bar{X}^-X^0}-\partial_{\mu}\bar{X}^0X^+\big)+ig s_w W^-_{\mu}\big(\partial_{\mu}\bar{X}^-Y \partial_\mu \bar{Y}X^+ \big) + i g c_w Z_\mu^\mu (\partial_\mu \bar{X}^+ X^+ - \partial_\mu \bar{X}^- X^-) + i g s_w A_\mu (\partial_\mu \bar{X}^+ X^+ - \partial_\mu \bar{Y}^- X^+)$ $\partial_\mu \bar{X^-} X^-) - \tfrac{1}{2} g M [\bar{X^+} X^+ H + \bar{X^-} X^- H + \tfrac{1}{c_w^2} \bar{X^0} X^0 H] +$ $\tfrac{1-2c_w^2}{2c_w} i g M [\bar{X}^+ X^0 \phi^+ - \bar{X}^- X^0 \phi^-] + \tfrac{1}{2c_w} i g M [\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^-] +$ $\overbrace{\phantom{a_{w}}^{e_{w}}\!\!\!ig_{{M}}s_{w}[\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-}]}^{\phantom{w^{\prime}+}\!\!\!}\,+\,\frac{2e_{w}}{2}ig_{{M}}[\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}]$

The Standard Model of particle physics...

Gauge bosons $\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ Gauge boson coupling to fermions (EW, $+i\Psi I$ OCD $D_{\mu}\Phi^{\dagger}D^{\mu}\Phi$ $\bar{\Psi}_L Y \Phi \Psi_R + h.c.$

Higgs coupling to fermions (fermion masses) Higgs coupling to bosons (boson masses)

Higgs self-coupling (Higgs potential)

A theory built (and probed) over time...

 $1972 - CERN$

 $1983 - CERN/SppS$ W and Z bosons

UA1, UA2

 $1990 - CERN/LEP$ Three families of neutrinos

1994 - Fermilab/TeVatron Top quark

 \mathbf{Y}

 10.6 11.0

 10.2

CDF, DO

How do we compare experiment and predictions in a quantum field theory?

- Through two fundamental quantities:
- σ (cross section): **probability** of a particle of being produced in collisions at a given energy (es. 13 TeV at LHC)
	- \checkmark May be differential, that is, as a function of the energy of the particle, the angles of its trajectory, etc.
- Γ (decay rate): probability of a particle of decaying into certain specific final particles
	- \checkmark The sum of all Γ 's is the total decay rate, and because of resonance

theory it is the inverse of its decay time: $|\tau = 1/\Gamma|$

LHC

SUISSE

FRANCE

Roberto Covarelli

pp collider (2008-present) $\sqrt{s} = 7 - 8 - 13$ TeV

 $-CMS$

LHC 27 km

 $LHCb-$

CERN Prévessin

ON

ATLAS-

SPS_7 km

CERN Meyrin

ALICE

Luminosity

In a collider ring...

$$
\mathcal{L} = \frac{1}{4\pi} \frac{f k N_1 N_2}{\sigma_x \sigma_y} \text{Current} \quad \text{Beam sizes (RMS)}
$$

About the inner life of a proton

p rotons have substructure!

- \checkmark partons = quarks & gluons
- \checkmark 3 valence (colored) quarks bound by gluons
- Gluons (colored) have self-interactions \checkmark
- Virtual quark pairs can pop-up (sea-quark)
- \checkmark p momentum shared among constituents
	- described by p structure functions

Parton energy not 'monochromatic'

- **Parton Distribution Function**
- PDF = $q(x,Q^2)$, $q = u,d,s...g$ p_e^{fin} P_e^{in} $Q^2 = (p_e^{in} - p_e^{fin})^2$

Kinematic variables

- Bjorken-x: fraction of the proton momentum carried by struck parton
- $x = p_{\text{parton}}/p_{\text{proton}}$ Q^2 : 4-momentum² transfer

Roberto Covarelli

Cross sections at a proton-proton collider

Cross-sections at LHC

Roberto Covarelli

How do we compare experiment and prediction in a quantum field theory?

Through two fundamental quantities:

- σ (cross section): probability of a particle of being produced in collisions at a given energy (es. 13 TeV at LHC)
	- \checkmark May be *differential*, that is, as a function of the energy of the particle, the angles of its trajectory, etc.
- Γ (decay rate): **probability** of a particle of decaying into certain specific final particles
	- \checkmark The sum of all Γ 's is the total decay rate, and because of resonance

theory it is the inverse of its decay time: $\tau = 1/\Gamma$

What do we want to measure?

... "stable" particles from unstable particle decays!

(experimental) LHC physics

Roberto Covarelli

(experimental) LHC physics

What do we want to measure?

Example: let's assume a Higgs boson is produced at the LHC ... It is a SM particle, we can predict how and how frequently

... we look for "stable" particles from an unstable particle decays

this is what we are looking for...

Identifying and measuring "stable" particles

- Particles are characterized by
	- [Unit: eV/c^2 or eV] \sqrt{M} ass $[Unit: e]$
	- \checkmark Charge \checkmark Energy [Unit: eV]
	- ✔ Momentum [Unit: eV/c or eV]
	- \checkmark (+ spin, lifetime, ...)

Particle identification via measurement of:

e.g. (E, p, Q) or (p, β, Q) (p, m, Q) ...

... and move at relativistic speed (here in "natural" unit: $\hbar = c = 1$)

 $\beta = \frac{c}{c} \quad \gamma = \frac{c}{\sqrt{1 - \beta^2}}$ $E^2 = \vec{p}^2 + m^2$ $E = m\gamma \quad \vec{p} = m\gamma\vec{\beta}$ $\ell = \frac{\ell_0}{\gamma}$ length contraction $\vec{\beta} = \frac{\vec{p}}{E}$ $t=t_0\gamma$ time dilation

(experimental) LHC physics

Center of mass energy

- In the center-of-mass frame the total momentum is 0
- In laboratory frame, the center of mass energy can be computed as:

$$
E_{\rm cm} = \sqrt{s} = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}
$$

Hint: it can be computed as the "length" of the total four-momentum, that is invariant:

$$
p = (E, \vec{p}) \qquad \qquad \sqrt{p \cdot p}
$$

What is the "length" of a the four-momentum of a particle?

A Z->e⁺e⁻ event at LEP and ad LHC

Roberto Covarelli

Pile-Up

 $PU =$ number of inelastic interactions per beam bunch crossing

CMS Average Pileup (pp, \sqrt{s} =13 TeV)

Z-> uu event with 25 reconstructed vertices

Collider experiment coordinates

Interaction mode cheat sheet ("light" particles)

- electrically charged
- ionization (dE/dx)
- electromagnetic $shower...$

- electrically charged
- ionization (dE/dx)
- can emit photons
	- \checkmark electromagnetic shower induced by emitted photon...
		- but it's rare...
- produce hadron(s) jets via QCD hadronization process
- For now, let's just think about hadrons...
	- \checkmark ionization
	- hadronic shower...

- electrically neutral
- pair production $\sqrt{F} > 1$ MeV
- electromagnetic shower...

Magnetic spectrometer for ionizing particles

- A system to measure (charged) particle momentum
- Tracking device + magnetic field

Calorimeters for showering particles

- Electromagnetic shower
	- - Until below e⁺e⁻ threshold
	- ◆ Photons: pair production
• Until below e⁺e⁻ thresho
◆ Electrons: bremsstrahlung
		- Until brem cross-section smaller than ionization

$$
\left. \frac{dE}{dx}(E_c) \right|_{\text{Brems}} = \left. \frac{dE}{dx}(E_c) \right|_{\text{Ion}}
$$

- **Hadronic showers**
	- √ Inelastic scattering w/ nuclei
		- Further inelastic scattering until below pion production threshold
	- ✓✓ \checkmark Sequential decays
		- $-$ π⁰ \rightarrow γγ
		- β-decay, γ
		- Neutron capture, spallation, ...

Hadronic vs. EM showers

Particle identification with CMS@LHC

(experimental) LHC physics

A few more words on QCD

- QCD (strong) interactions are carried out by massless spin-1 particles called gluons
	- \checkmark Gluons are massless
		- Long range interaction
	- \checkmark Gluons couple to color charges
	- \checkmark Gluons have color themselves
		- They can couple to other gluons

Principle of asymptotic freedom

- \checkmark At short distances strong interactions are weak
	- Quarks and gluons are essentially free particles
	- Perturbative regime (can calculate!)
- \checkmark At large distances, higher-order diagrams dominate
	- Interaction is very strong
	- Perturbative regime fails, have to resort to effective models

quark-quark effective potential

Confinement, hadronization, jets

CMS Experiment at the LHC, CERN Data recorded: 2018-May-09 22:21:35.609792 GMT Run / Event / LS: 316058 / 353438669 / 284

Neutrino (and other invisible particles) at colliders

1956: Savannah River Plant

electron neutrino

- Cross section $\sigma \sim 10^{-38}$ cm² × E [GeV]
	- \checkmark This means 10 GeV neutrinos can pass through more then a million km of rock
- Neutrinos are usually detected in HEP experiments through missing (transverse) energy

- Missing energy resolution depends on
	- Detector acceptance
	- Detector noise and resolution (e.g. calorimeters)

B-tagging

- When a b quark is produced, the associated jet will very likely contain at least one B meson or hadron
- B mesons/hadrons have relatively long lifetime
	- $\sqrt{\sim}$ 1.6 ps
	- \checkmark They will travel away form collision point before decaying
- Identifying a secondary decay vertex in a jet allow to tag its quark content
- Similar procedure for c quark...

top quark

All jets 44%

Tau

- Tau are heavy enough that they can decay in several final states
	- \checkmark Several of them with hadrons
	- \checkmark Sometimes neutral hadrons
- Mean lifetime \sim 0.29 ps
	- \checkmark 10 GeV tau flies \sim 0.5 mm
	- \checkmark Too short to be directly seen in the detectors
- Tau needs to be identified by their decay products
- Accurate vertex detectors can detect that they do not come exactly from the interaction point

Additional information

(I find you lack of faith disturbing)

Before the LHC startup

or New Physics should manifest to avoid unitarity violation in WW scattering at TeV scale

(experimental) LHC physics

Electron energy loss

1897: Cavendish Laboratory

1937 : Caltech and Harvard

HEP, SI and "natural" units

Relativistic kinematics in a nutshell

 $E^2 = p^2 + m^2$ $\ell = \frac{\ell_0}{\ell}$ $E=m\gamma$ $\vec{p} = m\gamma\vec{\beta}$ $t=t_0\gamma$ $=\frac{\vec{p}}{E}$

Cross section: magnitude and units

Strong interactions happens up to $b = 2R$

 $\sigma = \pi (2R)^2 = \pi \cdot 1.6^2$ fm² $=\pi \cdot 1.6^2 10^{-26}$ cm² $= \pi \cdot 1.6^2 10$ mb $= 80$ mb

Proton-proton scattering cross-section

Fixed target vs. collider

How much energy should a fixed target experiment have to equal the center of mass energy of two colliding beam?

Syncrotron radiation

energy lost per revolution

 $\Delta E = \frac{4\pi}{3} \frac{1}{4\pi\epsilon_0} \left(\frac{e^3\beta^3\gamma^4}{R}\right)$

electrons vs. protons

It's easier to accelerate protons to higher energies, but protons are fundamentals...

CERN accelerator complex

Magnetic spectrometer

Charged particle in magnetic field

 $\frac{d\vec{p}}{dt} = q\vec{\beta} \times \vec{B}$

If the field is constant and we neglect presence of matter, momentum magnitude is constant with time, trajectory is helical

$$
p[\mathrm{GeV}] = 0.3 B[\mathrm{T}]\rho[\mathrm{m}]
$$

Actual trajectory differ from exact helix because of:

- magnetic field inhomogeneity
- particle energy loss (ionization, multiple scattering)

Momentum measurement

points Momentum resolution due

to measurement error

Momentum resolution gets worse for larger momenta

smaller for larger number of measurement error (RMS) $= A_N$ $\frac{\epsilon}{L^2}\frac{p}{0.3B}$

> projected track lengthresolution is improved faster in magnetic field by increasing L then B

Electromagnetic showers

Dominant processes at high energies ...

Photons : Pair production Electrons : Bremsstrahlung

Pair production:

$$
\sigma_{\text{pair}} \approx \frac{7}{9} \left(4 \alpha r_{\text{e}}^2 Z^2 \ln \frac{183}{Z^{\frac{1}{3}}} \right)
$$

$$
= \frac{7}{9} \frac{A}{N_A X_0} \qquad \text{[No: radiation length]}
$$

Absorption coefficient:

$$
\mu = n\sigma = \rho \frac{N_A}{A} \cdot \sigma_{\text{pair}} = \frac{7}{9} \frac{\rho}{X_0}
$$

Bremsstrahlung:

$$
\frac{dE}{dx} = 4aN_A \frac{Z^2}{A}r_e^2 \cdot E \ln \frac{183}{Z^{\frac{1}{3}}} = \frac{E}{X_0}
$$

$$
E = E_0 e^{-x/X_0}
$$

After passage of one X_0 electron has only $(1/e)^{\text{th}}$ of its primary energy ... [i.e. 37%]

$$
\text{Critical energy:} \quad \frac{dE}{dx}(E_c)\Big|_{\text{Brems}} = \frac{dE}{dx}(E_c)\Big|_{\text{Ion}}
$$

Hadronic showers

Shower development:

- $p + Nucleus \rightarrow Pions + N^* + ...$ $\mathbf{1}$.
- 2. Secondary particles ...

undergo further inelastic collisions until they fall below pion production threshold

3. Sequential decays ...

 π_0 \rightarrow yy: yields electromagnetic shower Fission fragments \rightarrow β -decay, y-decay Neutron capture \rightarrow fission Spallation ...

Typical transverse momentum: $p_t \sim 350$ MeV/c

Homogeneous calorimeters

★ In a homogeneous calorimeter the whole detector volume is filled by a high-density material which simultaneously serves as absorber as well as as active medium ...

- Advantage: homogenous calorimeters provide optimal energy resolution ★
- Disadvantage: very expensive ★
- Homogenous calorimeters are exclusively used for electromagnetic ★calorimeter, i.e. energy measurement of electrons and photons

Sampling Calorimeters

Scheme of a sandwich calorimeter

Principle:

Alternating layers of absorber and active material [sandwich calorimeter]

Absorber materials: [high density]

Uranium (U) Iron (Fe) Lead (Pb) [For compensation ...]

Active materials:

<u>. After the Plas</u>
Silic Liquid ionization chamber
Cas detectors Plastic scintillator Silicon detectors Gas detectors

A typical HEP calorimetry system

Typical Calorimeter: two components ...

Electromagnetic (EM) $+$ Hadronic section (Had) ...

Different setups chosen for optimal energy resolution ...

Schematic of a typical HEP calorimeter

But:

Hadronic energy measured in both parts of calorimeter ...

Needs careful consideration of different response ...

Energy resolution in calorimeters

Resolution: EM vs. HAD

Sampling fluctuations only minor contribution to hadronic energy resolution