(experimental) LHC physics

Roberto Covarelli

(experimental) LHC physics

Experiment = probing/building theories with data!

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{aae}g^{b}_{\mu}g^{c}_{\nu}g^{a}_{\mu}g^{e}_{\nu} +$ $\frac{1}{2}ig_s^2(g_i^a\gamma^\mu g_j^a)g_\mu^a + \bar{G}^a\partial^2 G^a + g_sf^{abc}\partial_\mu\bar{G}^aG^bg_\mu^c - \partial_\nu W_\mu^+\partial_\nu W_\mu^- M^{2}W^{+}_{\mu}W^{-}_{\mu} - \frac{1}{2}\partial_{\nu}Z^{0}_{\mu}\partial_{\nu}Z^{0}_{\mu} - \frac{1}{2c_{w}^{2}}M^{2}Z^{0}_{\mu}Z^{0}_{\mu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - M^{2}W^{+}_{\mu}W^{-}_{\mu}M^{2}Q^{0}_{\mu} - \frac{1}{2}\partial_{\mu}H^{2}\partial_{\mu}H^{2} - \frac{1}{2}\partial_{\mu}H^{2} - \frac{1}{2$ $\frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu - \psi^+_\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\mu - \psi^+_\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu (W^+_\mu W^-_\mu - \psi^+_\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu W^+_\mu W^-_\mu - \psi^+_\mu] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu (W^+_\mu W^-_\mu - \psi^+_\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu (W^+_\mu W^-_\mu - \psi^+_\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu (W^+_\mu W^-_\mu - \psi^+_\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu (W^+_\mu W^-_\mu - \psi^+_\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu (W^+_\mu W^-_\mu - \psi^+_\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu (W^+_\mu W^-_\mu - \psi^+_\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu (W^+_\mu W^-_\mu - \psi^+_\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu (W^+_\mu W^-_\mu - \psi^+_\mu)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu (W^+_\mu W^-_\mu - \psi^+_\mu - \psi^+_\mu - \psi^+_\mu - \psi^+_\mu]] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu (W^+_\mu W^-_\mu - \psi^+_\mu - \psi^+_\mu - \psi^+_\mu - \psi^+_\mu - \psi^+_\mu]] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu - \psi^+_\mu - \psi^+_\mu - \psi^+_\mu - \psi^+_\mu - \psi^+_\mu]] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu - \psi^+_\mu - \psi^+_\mu - \psi^+_\mu]] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\mu Z^0_\mu - \psi^+_\mu - \psi^+_\mu - \psi^+_\mu]]$ $\begin{array}{c} g \\ W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}W_{\nu}^{+}) \\ W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}) \\ \end{array}$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + W_{\nu}^{-}W_{\nu}^{$ $\frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\mu}W^{-}_{\nu} + g^{2}c^{2}_{w}(Z^{0}_{\mu}W^{+}_{\mu}Z^{0}_{\nu}W^{-}_{\nu} - Z^{0}_{\mu}Z^{0}_{\mu}W^{+}_{\nu}W^{-}_{\nu}) +$ $g^{2} s^{2}_{w} (A_{\mu} W^{+}_{\mu} A_{\nu} W^{-}_{\nu} - A_{\mu} A_{\mu} W^{+}_{\nu} W^{-}_{\nu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} (W^{+}_{\mu} W^{-}_{\nu} - A_{\mu} A_{\mu} W^{+}_{\nu} W^{-}_{\nu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\nu} - A_{\mu} A_{\mu} W^{+}_{\nu} W^{-}_{\nu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\nu} - A_{\mu} A_{\mu} W^{+}_{\nu} W^{-}_{\nu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\nu} - A_{\mu} A_{\mu} W^{+}_{\nu} W^{-}_{\nu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\nu} - A_{\mu} A_{\mu} W^{+}_{\nu} W^{-}_{\nu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\nu} - A_{\mu} A_{\mu} W^{+}_{\nu} W^{-}_{\nu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\nu} - A_{\mu} A_{\mu} W^{+}_{\nu} W^{-}_{\nu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\nu} - A_{\mu} A_{\mu} W^{+}_{\nu} W^{-}_{\nu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\nu} - A_{\mu} A_{\mu} W^{+}_{\nu} W^{-}_{\nu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\nu} - A_{\mu} A_{\mu} W^{+}_{\nu} W^{-}_{\nu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\nu} - A_{\mu} A_{\mu} W^{+}_{\nu} W^{-}_{\nu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\nu} - A_{\mu} A_{\mu} W^{+}_{\nu} W^{-}_{\nu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\mu} W^{-}_{\mu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\mu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\nu} W^{+}_{\mu} W^{-}_{\mu}) + g^{2} s_{w} c_{w} (A_{\mu} Z^{0}_{\mu} W^{+}_{\mu} W^{-}_{\mu}) + g^{2} s_{w} (A_{\mu} Z^{0}_{\mu} W^{+}_{\mu} W^{-}_{\mu})$ $\begin{array}{c} W_{\nu}^{w}W_{\mu}^{-} & p \\ W_{\nu}^{+}W_{\mu}^{-} & -2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-} \\ \end{array} \right] - g\alpha \Big(H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-} \Big) - \\ \end{array} \\$ $\frac{1}{8}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]$ $g_{M}W_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g_{c_{\nu}}^{M}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - g_{\mu}^{0}W_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g_{c_{\nu}}^{M}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - g_{\mu}^{0}W_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g_{c_{\nu}}^{M}W_{\mu}^{-}H - \frac{1}{2}g_{c_{\nu}}^{M}W_{\mu}^{ W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-W^{-}_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{+}-W^{-}_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-W^{-}_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-W^{-}_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-W^{-}_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-W^{-}_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g\frac{1}{c_{w}}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g\frac{1}{c_{w}}(W^{+}_{\mu}\phi^{-}) + \frac{1}{2}g\frac{1}{c_{w}}(W^{+}_{\mu}\phi^{ \frac{\partial \mu}{\partial t} \frac{\partial$ $\frac{g_{3w}}{g_{5w}} \frac{g_{4w}}{g_{4w}} \frac{g_{4w}}{g_{4w}} - \frac{g$ $\frac{1}{4}g^2 \frac{1}{c_w^2} Z_\mu^0 Z_\mu^0 [H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z_\mu^0 \phi^0 (W_\mu^+ \phi^- + 1)^2 \phi^+ \phi^-]$ $W^{\omega}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{\mu}^{2}}{c_{w}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} + W^{-}_{\mu}\phi^{+}))$
$$\begin{split} & \overset{\mu}{} \overset{\psi}{} \overset{\gamma}{} = 2^{-g} \overset{c_w}{} \overset{\mu}{} \overset{\mu}{} \overset{\mu}{} \overset{\psi}{} \overset{\mu}{} \overset{\mu}{} \overset{\varphi}{} \overset{\mu}{} \overset{\mu}{$$
 $\begin{array}{c} {}_{\mu} \downarrow {}_{j} {}_{2} {}_{2} {}_{2} {}_{g} {}_{w} {}_{\mu} \mu \downarrow {}_{\mu} \downarrow {}_{\mu$ $\frac{d}{d_j}(\gamma\partial + m_d^{\lambda})d_j^{\lambda} + igs_wA_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda}) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma^{\mu}d_j^{\lambda})] +$ $\frac{19}{4c_w}Z^0_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2$ $\frac{4c_w - \mu_1(\chi)}{1 - \gamma^5)u_j^{\lambda}} + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)\dot{J}_{\lambda}^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \gamma^5)\dot{J}_{\lambda}^{\lambda})] + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \gamma^5)\dot{J}_{\lambda}^{\lambda})] + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \gamma^5)\dot{J}_{\lambda}^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \gamma^5)\dot{J}_{\lambda}^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \gamma^5)\dot{J}_{\lambda}^{\lambda})] + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \gamma^5)\dot{J}_{\lambda}^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \gamma^5)\dot{J}_{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \gamma^5)\dot{J}_$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})]$ $\gamma^{5}(u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}} \frac{m_{\lambda}^{\lambda}}{M} \left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda}) \right] -$ $\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda})+i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})]+\frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa})+$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa})]$ $\gamma^5)u_j^\kappa] - \frac{q}{2} \frac{m_{\tilde{\omega}}^\lambda}{M} H(\bar{u}_j^\lambda u_j^\lambda) - \frac{q}{2} \frac{m_{\tilde{\omega}}^\lambda}{M} H(\bar{d}_j^\lambda d_j^\lambda) + \frac{iq}{2} \frac{m_{\tilde{\omega}}^\lambda}{M} \phi^0(\bar{u}_j^\lambda \gamma^5 u_j^\lambda) \frac{ig}{2}\frac{m_{\lambda}}{M}\phi^{0}(\vec{d}_{j}^{\lambda}\gamma^{5}\vec{d}_{j}^{\lambda}) + \vec{X}^{+}(\partial^{2} - M^{2})X^{+} + \vec{X}^{-}(\partial^{2} - M^{2})X^{-} + \vec{X}^{0}(\partial^{2} - M^{0})X^{-} + \vec{X}^{0}(\partial^{2} - M^{0})X^{-} + \vec{X}^{0}(\partial^{2} - M^{0})X^{-} + \vec{$ $\frac{\frac{2}{M}}{\frac{2}{c_w^2}}X^0 + \bar{Y}\partial^2Y + igc_wW^+_{\mu}(\partial_{\mu}\bar{X}^0X^- - \partial_{\mu}\bar{X}^+X^0) + igs_wW^+_{\mu}(\partial_{\mu}\bar{Y}X^- - \partial_{\mu}\bar{X}^+X^0) + igs_wW^+_{\mu}(\partial_{\mu}\bar{X}^0X^- - \partial_{\mu}\bar{X}^0X^- - \partial$ $\overset{e_w}{\partial_\mu \bar{X}^+ Y} + igc_w W^-_\mu (\partial_\mu \bar{X}^- X^0 - \partial_\mu \bar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu \bar{X}^- Y - \partial_\mu \bar{X}^0 X^+)$ $\partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + igs_{w$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] +$ $\tfrac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+-\bar{X}^-X^0\phi^-]+\tfrac{1}{2c_w}igM[\bar{X}^0X^-\phi^+-\bar{X}^0X^+\phi^-]+$ $\frac{e_w}{igMs_w}[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$

The Standard Model of particle physics...

Gauge bosons

Gauge boson coupling to fermions (EW, QCD)

$$+ D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - V(\Phi) + \bar{\Psi}_L \hat{Y} \Phi \Psi_R + h.c.$$

Higgs coupling to fermions (fermion masses) Higgs coupling to bosons (boson masses)

Higgs self-coupling (Higgs potential)

A theory built (and probed) over time...

1972 - CERN

1983 — CERN/SppS W and Z bosons

UA1, UA2

1990 – CERN/LEP Three families of neutrinos

1994 — Fermilab/TeVatron Top quark

CDF, **D**0

How do we compare experiment and predictions in a **quantum** field theory?

- Through two fundamental quantities:
- σ (cross section): **probability** of a particle of being produced in collisions at a given energy (es. 13 TeV at LHC)
 - \checkmark May be *differential*, that is, as a function of the energy of the particle, the angles of its trajectory, etc.
- Γ (decay rate): probability of a particle of decaying into certain specific final particles
 - \checkmark The sum of all Γ 's is the total decay rate, and because of resonance

theory it is the inverse of its decay time: $|\tau = 1/\Gamma|$

LHC

SUISSE

FRANCE

Roberto Covarelli

pp collider (2008-present) $\sqrt{s} = 7-8-13$ TeV

-CMS

LHC 27 km

LHCb-

CERN Prévessin

-

ATLAS-

SPS_ 7 km

CERN Meyrin

ALICE

Luminosity

In a collider ring...

$$\mathcal{L}=rac{1}{4\pi}rac{fkN_1N_2}{\sigma_x\sigma_y}$$
 Current Beam sizes (RMS)

About the inner life of a proton

• *p* rotons have substructure!

- partons = quarks & gluons
- 3 valence (colored) quarks bound by gluons
- ✓ Gluons (colored) have self-interactions
- Virtual quark pairs can pop-up (sea-quark)
- p momentum shared among constituents
 - described by *p* structure functions

Parton energy not 'monochromatic'

- Parton Distribution Function
- PDF = $q(x,Q^2)$, q = u,d,s,..g P_e^{fin} $Q^2 = (p_e^{in} - p_e^{fin})^2$

• Kinematic variables

- Bjorken-x: fraction of the proton momentum carried by struck parton
- × = P_{parton}/P_{proton}
 ✓ Q²: 4-momentum² transfer

Roberto Covarelli

(experimental) LHC physics

9

Cross sections at a proton-proton collider

Roberto Covarelli

В

Cross-sections at LHC

Roberto Covarelli

How do we compare experiment and prediction in a quantum field theory?

<u>Through two fundamental quantities:</u>

- σ (cross section): probability of a particle of being produced in collisions at a given energy (es. 13 TeV at LHC)
 - ✓ May be differential, that is, as a function of the energy of the particle,
- Γ (decay rate): **probability** of a particle of decaying into certain specific final particles
 - \checkmark The sum of all Γ 's is the total decay rate, and because of resonance

theory it is the inverse of its decay time: $\tau = 1/\Gamma$

What do we want to measure?

... "stable" particles from unstable particle decays!

(experimental) LHC physics

Roberto Covarelli

(experimental) LHC physics

What do we want to measure?

Example: let's assume a Higgs boson is produced at the LHC ... It is a **SM particle**, we **can predict** how and how frequently

... we look for "stable" particles from an unstable particle decays

this is what we are looking for...

Identifying and measuring "stable" particles

- Particles are characterized by
 - ✓ Mass [Unit: eV/c² or eV]
 ✓ Charge [Unit: e]
 ✓ Energy [Unit: eV]
 - ✓ Momentum [Unit: eV/c or eV]
 - ✓ (+ spin, lifetime, ...)

Particle identification via measurement of:

... and move at relativistic speed (here in "natural" unit: $\hbar = c = I$)

$$\begin{split} \beta &= \frac{v}{c} \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}} \\ \ell &= \frac{\ell_0}{\gamma} \quad \text{length contraction} \\ t &= t_0 \gamma \quad \text{time dilation} \end{split} \qquad \begin{aligned} E^2 &= \vec{p}^2 + m^2 \\ E &= m\gamma \quad \vec{p} = m\gamma \vec{\beta} \\ \vec{\beta} &= \frac{\vec{p}}{E} \end{aligned}$$

Center of mass energy

- In the center-of-mass frame the total momentum is 0
- In laboratory frame, the center of mass energy can be computed as:

$$E_{\rm cm} = \sqrt{s} = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$

Hint: it can be computed as the "length" of the total four-momentum, that is invariant:

$$p = (E, \vec{p}) \qquad \sqrt{p \cdot p}$$

What is the "length" of a the four-momentum of a particle?

$A Z \rightarrow e^+e^-$ event at LEP and ad LHC

Roberto Covarelli

Pile-Up

PU = number of inelastic interactions per beam bunch crossing

CMS Average Pileup (pp, \sqrt{s} =13 TeV)

Mean number of interactions per crossing

$Z \rightarrow \mu\mu$ event with 25 reconstructed vertices

Collider experiment coordinates

Interaction mode cheat sheet ("light" particles)

- electrically charged
- ionization (dE/dx)
- electromagnetic shower...

- electrically charged
- ionization (dE/dx)
- can emit photons
 - electromagnetic shower induced by emitted photon...
 - but it's rare...
- produce *hadron(s)* jets via QCD hadronization process
- For now, let's just think about hadrons...
 - ionization
 - ✓ hadronic shower…

- electrically neutral
- pair production ✓ E >1 MeV
- electromagnetic shower...

Magnetic spectrometer for ionizing particles

- A system to measure (charged) particle momentum
- Tracking device + magnetic field

Calorimeters for showering particles

- Electromagnetic shower
 - Photons: pair production
 - Until below e⁺e⁻ threshold
 - Electrons: bremsstrahlung
 - Until brem cross-section smaller than ionization

$$\left. \frac{dE}{dx}(E_c) \right|_{\text{Brems}} = \left. \frac{dE}{dx}(E_c) \right|_{\text{Ion}}$$

- Hadronic showers
 - ✓ Inelastic scattering w/ nuclei
 - Further inelastic scattering until below pion production threshold
 - Sequential decays
 - $\pi^0 \rightarrow \gamma \gamma$
 - Fission fragment: β -decay, γ -decay
 - Neutron capture, spallation, ...

Hadronic vs. EM showers

Particle identification with CMS@LHC

⁽experimental) LHC physics

A few more words on QCD

- QCD (strong) interactions are carried out by massless spin-1 particles called gluons
 - Gluons are massless
 - Long range interaction
 - Gluons couple to color charges
 - Gluons have color themselves
 - They can couple to other gluons

Principle of asymptotic freedom

- At short distances strong interactions are weak
 - Quarks and gluons are essentially free particles
 - Perturbative regime (can calculate!)
- ✓ At large distances, higher-order diagrams dominate
 - Interaction is very strong
 - Perturbative regime fails, have to resort to effective models

quark-quark effective potential

Confinement, hadronization, jets

CMS Experiment at the LHC, CERN Data recorded: 2018-May-09 22:21:35.609792 GMT Run / Event / LS: 316058 / 353438669 / 284

Neutrino (and other invisible particles) at colliders

1956: Savannah River Plant

electron neutrino

- Cross section $\sigma \sim 10^{-38} \text{ cm}^2 \times E[\text{GeV}]$
 - This means 10 GeV neutrinos can pass through more then a million km of rock
- Neutrinos are usually detected in HEP experiments through missing (transverse) energy

- Missing energy resolution depends on
 - Detector acceptance
 - Detector noise and resolution (e.g. calorimeters)

B-tagging

- When a b quark is produced, the associated jet will very likely contain at least one B meson or hadron
- B mesons/hadrons have relatively long lifetime
 - ✓ ~ I.6 ps
 - They will travel away form collision point before decaying
- Identifying a secondary decay vertex in a jet allow to tag its quark content
- Similar procedure for c quark...

top quark

All jets 44%

Tau

- Tau are heavy enough that they can decay in several final states
 - Several of them with hadrons
 - Sometimes neutral hadrons
- Mean lifetime ~ 0.29 ps
 - ✓ 10 GeV tau flies ~ 0.5 mm
 - \checkmark Too short to be directly seen in the detectors
- Tau needs to be identified by their decay products
- Accurate vertex detectors can detect that they do not come exactly from the interaction point

Additional information

36

(I find you lack of faith disturbing)

Before the LHC startup

Either the Higgs boson is discovered,

or New Physics should manifest to avoid unitarity violation in WW scattering at TeV scale

(experimental) LHC physics

Electron energy loss

1897: Cavendish Laboratory

Muon energy loss

1937 : Caltech and Harvard

Roberto Covarelli

HEP, SI and "natural" units

Quantity	HEP units	SI units	
length	l fm	10 ⁻¹⁵ m	
charge	e	I.602·I0 ⁻¹⁹ C	
energy	I GeV	I.602 × I0⁻¹⁰ J	
mass	I GeV/c ²	1.78 x 10 ⁻²⁷ kg	
ħ = h∕2pi	6.588 x 10 ⁻²⁵ GeV s	1.055 x 10 ^{−34} Js	
C	2.988 x 10 ²³ fm/s	2.988 x 10 ⁸ m/s	
ћс	197 MeV fm	• • •	
	"natural" units ($\hbar = c = 1$))	
mass	I GeV		
length	I GeV-I = 0.1973 fm		
time	I GeV ⁻¹ = 6.59 x 10 ⁻²⁵ s		

Relativistic kinematics in a nutshell

 $E^2 = \vec{p}^2 + m^2$ $\ell = \frac{\ell_0}{\ell}$ $E = m\gamma$ $\vec{p} = m\gamma\vec{\beta}$ $t = t_0 \gamma$ $=\frac{\vec{p}}{\vec{F'}}$

Cross section: magnitude and units

Standard cross section unit:	[σ] = mb	with $1 \text{ mb} = 10^{-27} \text{ cm}^2$	
or in natural units:	[σ] = GeV ⁻²	with 1 GeV ⁻² = 0.389 mb 1 mb = 2.57 GeV ⁻²	
Estimating the proton-proton cross see	ction:	using: $\hbar c = 0.1973 \text{ GeV fm}$ $(\hbar c)^2 = 0.389 \text{ GeV}^2 \text{ mb}$	
		Proton radius: $R = 0.8$ fm Strong interactions happens up to b = 2R	

b 2R Effective cross section

 $\sigma = \pi (2R)^2 = \pi \cdot 1.6^2 \text{ fm}^2$ = $\pi \cdot 1.6^2 \ 10^{-26} \text{ cm}^2$ = $\pi \cdot 1.6^2 \ 10 \text{ mb}$ = 80 mb

Proton-proton scattering cross-section

Fixed target vs. collider

How much energy should a fixed target experiment have to equal the center of mass energy of two colliding beam?

Syncrotron radiation

energy lost per revolution

 $\Delta E = \frac{4\pi}{3} \frac{1}{4\pi\epsilon_0} \left(\frac{e^3\beta^3\gamma^4}{R}\right)$

electrons vs. protons

$$\frac{\Delta E_e}{\Delta E_p} \simeq \left(\frac{m_p}{m_e}\right)^4$$

It's easier to accelerate protons to higher energies, but protons are fundamentals...

CERN accelerator complex

Magnetic spectrometer

Charged particle in magnetic field

 $\frac{d\vec{p}}{dt} = q\vec{\beta} \times \vec{B}$

If the field is constant and we neglect presence of matter, momentum magnitude is constant with time, trajectory is helical

$$p[\text{GeV}] = 0.3B[\text{T}]\rho[\text{m}]$$

Actual trajectory differ from exact helix because of:

- magnetic field inhomogeneity
- particle energy loss (ionization, multiple scattering)

Momentum measurement

$$p \simeq \frac{l^2}{8s}$$
 $p = 0.3 \frac{Bl}{8s}$
 $\left|\frac{\delta p}{p}\right| = \left|\frac{\delta s}{s}\right|$

smaller for larger number of points

Momentum resolution due to measurement error

Momentum resolution gets worse for larger momenta

 $\left. \frac{\delta p}{p} \right| = A_N \frac{\epsilon}{L^2} \frac{p}{0.3B}$

projected track lengthresolution is improved faster in magnetic field by increasing L then B

19

Electromagnetic showers

Dominant processes at high energies ...

Photons : Pair production Electrons : Bremsstrahlung

Pair production:

$$\sigma_{\text{pair}} \approx \frac{7}{9} \left(4\alpha r_e^2 Z^2 \ln \frac{183}{Z^{\frac{1}{3}}} \right)$$
$$= \frac{7}{9} \frac{A}{N_A X_0} \qquad [X_0: \text{ radiation length}]_{[\text{in cm or g/cm}^2]}$$

Absorption coefficient:

$$\mu = n\sigma = \rho \frac{N_A}{A} \cdot \sigma_{\text{pair}} = \frac{7}{9} \frac{\rho}{X_0}$$

Bremsstrahlung:

$$\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} r_e^2 \cdot E \ln \frac{183}{Z^{\frac{1}{3}}} = \frac{E}{X_0}$$

$$E = E_0 e^{-x/X_0}$$

After passage of one X₀ electron has only (1/e)th of its primary energy ... [i.e. 37%]

Critical energy:
$$\left. \frac{dE}{dx}(E_c) \right|_{\text{Brems}} = \left. \frac{dE}{dx}(E_c) \right|_{\text{Ion}}$$

Hadronic showers

Shower development:

- 1. p + Nucleus \rightarrow Pions + N* + ...
- 2. Secondary particles ...

undergo further inelastic collisions until they fall below pion production threshold

3. Sequential decays ...

 $\pi_0 \rightarrow \gamma \gamma$: yields electromagnetic shower Fission fragments $\rightarrow \beta$ -decay, γ -decay Neutron capture \rightarrow fission Spallation ...

Typical transverse momentum: pt ~ 350 MeV/c

Homogeneous calorimeters

★ In a homogeneous calorimeter the whole detector volume is filled by a high-density material which simultaneously serves as absorber as well as as active medium ...

Signal	Material	
Scintillation light	BGO, BaF ₂ , CeF ₃ ,	
Cherenkov light	Lead Glass	
lonization signal	Liquid nobel gases (Ar, Kr, Xe)	

- ★ Advantage: homogenous calorimeters provide optimal energy resolution
- ★ Disadvantage: very expensive
- ★ Homogenous calorimeters are exclusively used for electromagnetic calorimeter, i.e. energy measurement of electrons and photons

Sampling calorimeters

Scheme of a sandwich calorimeter

Principle:

Alternating layers of absorber and active material [sandwich calorimeter]

Absorber materials: [high density]

> Iron (Fe) Lead (Pb) Uranium (U) [For compensation ...]

Active materials:

Plastic scintillator Silicon detectors Liquid ionization chamber Gas detectors

Electromagnetic shower

A typical HEP calorimetry system

Typical Calorimeter: two components ...

Electromagnetic (EM) + Hadronic section (Had) ...

Different setups chosen for optimal energy resolution ...

Schematic of a typical HEP calorimeter

But:

Hadronic energy measured in both parts of calorimeter ...

Needs careful consideration of different response ...

Energy resolution in calorimeters

Resolution: EM vs. HAD

Sampling fluctuations only minor contribution to hadronic energy resolution