

Dark Matter Direct Detection

Julien Masbou Subatech – Université de Nantes

What Dark Matter it not

What Dark Matter it not

 \rightarrow Barnard 68 : cold molecular cloud \sim 500 ly. Transparent in infrared

Definition

By « Dark Matter » we mean non-luminous matter : no associated emission of light (visible, UV, IR, radio, etc...)

... But we assume its existence by its gravitational effect in:

- 1) Galaxies 2) Galaxy clusters
- 3) Cosmology

Galaxies

In galaxies, stars are not statics but turns around the galactic center. Thanks to the rotation, the centrifugal force compensates the gravitational force, which prevents stars to collapse in the core.

Galaxies

Galaxies

Distance from center of galaxy \longrightarrow

Vera Rubin ~1970

Rotation velocity almost constant at all radius !

 \rightarrow Presence of a halo of invisible matter, 5-10 times heavier than standard matter

Gravitational lenses

Gravitational lenses

Gravitational lenses

Dark Matter 3D-map

Colliding clusters

Colliding clusters

Energy composition of the universe

5% of Standard Matter

25% of Dark Matter

70% of Dark Energy

Characteristics of Dark Matter Particles

-
-
- Weak interaction Non-baryonic Matter Stable - Non relativistic

Direct dark matter detection principle

Direct dark matter detection principle

- **Direct detection**
- Indirect detection
- Production

Direct dark matter detection principle

$$
E_r = \left(\frac{m_\chi}{2}v^2\right) \times \frac{4m_Nm_\chi}{\left(m_N + m_\chi\right)^2} \times \cos^2\vartheta_r
$$

$$
\sim
$$
 1 - 100 keV

Expected rate for terrestrial detector

Julien Masbou, GraSPA 2022, 26th July 2022 2022

How is evolving the field of Direct Detection ?

Julien Masbou, GraSPA 2022, 26th July 2022 21

Evolution of LXe TPC as WiMP detectors

Evolution of LXe TPC as WiMP detectors

- ultra-low background experimental environment
- low energy threshold to detect small recoil energy signals
- good discrimination power against particle that might mimic WIMP collision
- large detector mass to enhance the interaction probability inside the target

- ultra-low background experimental environment
- low energy threshold to detect small recoil energy signals
- good discrimination power against particle that might mimic WIMP collision
- large detector mass to enhance the interaction probability inside the target

The fight against the background

• **Avoid background**

- **External y's from natural radioactivity**
- Material screening
- Self shielding (fiducialization)

• **External neutrons** muon-induced (α, n) and fission reaction

- Material screening (low U and Th)
- Underground experiments
- Shield & active veto
- **Internal contamination**
- ⁸⁵Kr : removed by cryogenic distillation
- ²²²Rn : removed by cryogenic distillation
- $-$ ¹³⁶Xe : $\beta\beta$ decay, long lifetime (T_{1/2} = 2.2x10²¹ years)

• **Use WIMP properties**

- No double scatter
- Homogeneously distributed
	- à *Position reconstruction*
- Nuclear recoils
	- à *ER/NR Discrimination*

Cosmic Rays

To increase the sensitivity of the experiments, we need:

- To hide under a mountain to be protected from cosmic rays (100 per second across ou body),

- To be protected from natural radioactivity from rocks

- To purify from materials of the detector

XENON1T experiment site

PERIODIC TABLE OF ELEMENTS

Why Xenon ?

- Large mass number A (131) (Interaction cross section \propto A²)
- 50% odd isotopes $(129Xe, 131Xe)$ for Spin-Dependent interactions
- Kr can be reduced to ppt levels
- High stopping power, i.e. active volume is self-shielding
- Efficient scintillator (178 nm)
- Scalable to large target masses
- Electronic recoil discrimination with simultaneous measurement of scintillation and ionization

Dual phase TPC: principle

TPC = Time Projection Chamber

S1:

 \rightarrow Photon (λ = 178 nm) from Scintillation process

S1 S2

Drift time

S1 S2

 γ / β **Drift time**

Julien Masbou, GraSPA 2022, 26th July 2022 31

 χ / n

 \rightarrow Dectected by PMTs (mainly botton array)

> **N**uclear **R**ecoil

 \rightarrow X, Y from top array \rightarrow Z from Drift time

3D reconstruction :

Electronic

Recoil

Dual phase TPC: real life

X and Y position from S2 hit pattern on the top PMTs

How is evolving the field of Direct Detection ?

Julien Masbou, GraSPA 2022, 26th July 2022

XENON World

XENON1T facility

Water shield: deionized water as passive radiation shield **Muon veto:** Active muon veto against muon induced neutrons (84 PMTs)

Cryogenics: Stable conditions(3.2t LXe) **Purification:** LXe flow through getters, remove impurities

DAQ: Each channel has its own threshold, Flexible software algorithms **Readout:** Up to 300MB/s for high rate calibrations

ReStoX: Emergency recovery up to 7.6 tons of LXe

Passive: No active cooling required to keep Xe contained

Kr Distillation: Remove Kr from system during fill or online **Rn Distillation:** Initial tests show promising reduction for Rn

Julien Masbou, GraSPA 2022, 26th July 2022

XENON1T Data Taking

- DM total exposure SR0+SR1: 278.8 Live days
	- \rightarrow Largest exposure reported to-date with this type of detector
- Calibration Data:
	- 83mKr \rightarrow Spacial Response (electron lifetime,...)
	- $220Rn \rightarrow ER-Band$
	- 241AmBe & NG \rightarrow NR-Band
	- LED \rightarrow PMT gain monitoring
Calibrations

Electronic Recoils

²²⁸Th source emanates **220Rn** into LXe

- ^b**-decay** of 212Pb to 212Bi \rightarrow **low energy** events $(2 - 20 \,\text{keV})$
- Decay of activity dominated by 212Pb half-life (10.6 h)

Nuclear Recoils

- External **241AmBe** source mounted on a belt
	- \circ The α particles emitted by the decay of the Am collide with the light Be nuclei producing fast neutrons

• **Neutron Generator**

Julien Masbou, GraSPA 2022, 26th July 2022

Internal source

Dark Matter Search Data

- **Blinding** \rightarrow to avoid biases in event selection and signal/background modeling
- **Salting** (addition of fake events) \rightarrow to protect against post-unbliding tuning of the cuts and background models

Julien Masbou, GraSPA 2022, 26th July 2022

Fiducial Volume Optimization

Optimize fiducial volume before unblinding by using improved understanding

- position reconstruction
- detector response
- correlations between spectral and spacial distribution
- include knowledge on background distributions in statistical framework
- MC simulations

XENON1T Expectations

Dark Matter Search Results

- Results interpreted with unbinned profile likelihood analysis in cs1, cs2, ^R space
- Piechart indicate the relative probabilities of this event to be of a certain class for a best fit to a 200 GeV/ c^2 WIMPs with a cross-secI on of 4.6 x 10^{-47} cm2

Julien Masbou, GraSPA 2022, 26th July 2022 11 ⁴¹

Spacial Distribution of Dark Matter Search Results

- Core volume to distinguish WIMPs over neutron background
- Yellow shaded regions display the 1σ (dark), and 2σ (light) probability density percentiles of the radiogenic neutron background component

• **Spin-independent WIMP-nucleon cross section**

Strongest exclusion limits (at 90% CL) on WIMPs > 6 GeV/c2.

• **1 sigma upper fluctuation at higher WIMP masses**

No significant excess (>3 sigma) is observed.

Phys. Rev. Lett. 121, 111302 (2018)

Phases of the XENON Program

XENON10 2005 – 2007 15 cm drift TPC Total: 25 kg Target: **14** kg Fiducial: 5.4 kg

Achieved (2007) $\sigma_{\text{SI}} = 8.8 \cdot 10^{-44} \text{ cm}^2$ @ 100 GeV/c2

XENON100

2008 – 2016 30 cm drift TPC Total: 161 kg Target: **62** kg Fiducial: 34/48 kg

Achieved (2016) $\sigma_{\text{SI}} = 1.1 \cdot 10^{-45} \text{ cm}^2$ @ 55 GeV/c2

XENON1T 2012 – 2019 100 cm drift TPC Total: 3 200 kg Target: **2 000** kg Fiducial: 1 000 kg

Achieved (2018) $\sigma_{\text{SI}} = 4.1 \cdot 10^{-47} \text{ cm}^2$ @ 30 GeV/c2

XENONnT 2017 (R&D) – 2023 144 cm drift TPC Total: 8 000 kg Target: **6 000** kg Fiducial: 4 500 kg

Projected (2022) σ_{SI} = 1.6 x 10⁻⁴⁸ cm² @ 50 GeV/c2

From XENON1T to XENONnT

Julien Masbou, GraSPA 2022, 26th July 2022 45

Double electron capture (DEC) with 124Xe

- $124Xe + 2e^-$ → $124Te + 2v_e$
- Vacancies on the K shell : Detectable cascade of X-rays and Auger electrons in the **keV-range (64.3 keV)**
- Large half-lives : $> 10^{12}$. T_{univers}
- Needs very **low background** experiment

XENON1T

 $124Xe - 1 kg / t$

Double electron capture (DEC) with XENON1T

Double electron capture (DEC) Results

- Blinded region from 56 keV to 72 keV
- Ellipsoidal 1.5 t inner fiducial volume
- Peak at $E = (64.2 \pm 0.5)$ keV and $σ = (2.6 \pm 0.3)$ keV
- Significance 4.4σ

Half-life $T_{1/2}$ = $(1.8\pm0.5_{stat}\pm0.1_{svs})\times10²²$ y

Double β decay with and without neutrinos

Rare event = Need a low background experiment

Double β decay with and without neutrinos

136Xe isotope

- o Double β emitter
- o Naturally present in XENON1T (abundance of 8.49%)
- **Detection of electrons ⇔ Electronic Recoil**
- \circ Peak @2.457 MeV
- \circ High stopping power of LXe \Leftrightarrow Single Scatter
	- o Need a good discrimination between Single Scatter and Multiple Scatter
	- o Multiple Scatter :
		- o More abundant at high energy: background ν –lines \Leftrightarrow Compton scattering

Sum of Both Electron Energies (MeV)

Double β decay with and without neutrinos

Preliminary background estimation for :

Dark matter

Expected sensitivity according to the baseline design

1.17%

1000

 1.09% _{1.03}

0.91%

1500

Energy [keV]

Ф

Ξ

Ŧ LUX

0.92%

2000

XENON1T

XENON100

0.81%

2500

EXO-200

PandaX-II

 \mathbf{x}

 \pmb{x}

0.81%

 $\frac{1}{3000}$

Conclusions

- **Liquid Xenon is the world leading technique of DM searches**
- First multi-ton scale LXe-TPC successfully operated for more than 1 year
- **Strongest limit** on WIMP-nucleon SI cross-section above 6 GeV/c²: minimum at $4.1 \cdot 10^{-47}$ cm² for a WIMP of 30 GeV/c²
- Double Electron Capture detection : longest half-life ever measured directly
- Proof that xenon-based Dark Mater search experiments are sensitive for rare event searches

- *Dark matter is highly searched*
- *Solution to an astrophysics / particle physics / Cosmological problem*

Other XENON1T analysis:

- S2 only analysis channel
- Annual modulation
- Migdal effect
- Light dark matter searches

Noble gases

How is evolving the field of Direct Detection ?

Julien Masbou, GraSPA 2019, 22nd July 2019

Scintillation and ionization in noble liquids

- Energy deposit produce both:
	- Electron-ion pair
	- Excited atom states
- Anti-correlation between charge and light \rightarrow Improve energy resolution
- Excitation depends on dE/dx \rightarrow Discrimination capabilities

The largest Xe double-phase TPC ever built !

- Active Xe mass: 2 tons.
- Light sensors: 127+121 3" PMTs average $QE = 35%$
- Fully covered with high reflectivity PTFE to maximize light collection.
- Drift region: 1m height, 1m diameter.

Water Shield filling

- TPC fully immersed in water since July 2016
- Background studies and calibration runs started

Muon Veto Cherenkov Detector

- The cryostat is immersed in a water shield filled with 700 tons of water
- Deionized water is used as passive shield from environmental radiation
- Water is constantly purified
- Equipped with 84 high-QE, 8'' PMTs
- All walls are covered with reflective foil Detects Cherenkov light to tag muons.
- Expected muon flux underground is 1.2 $/m^2h^{-1} \rightarrow$ muon-induced neutron background is reduced to less than 0.01 ev/y thanks to muon tagging
- No coincidences with TPC found in this science run

JINST 9 P11006 (2014)

Detector Stability

All relevant parameters look stable throughout science runs

Energy Reconstruction

Electronic Recoil Background

- $•222$ Rn : 10 μ Bq/kg
- o Achieved with careful surface emana I on control and measurements
- measurements
 $\frac{1}{2}$ o Further reduction with online

cryogenic distillation cryogenic distillation
- •85Kr: sub ppt Kr/Xe
	- \circ Achieved with online cryogenic distillation
- •Material radioactivity is subdominant
- •Select fiducial volume in the TPC

lowest ER background ever in DM detectors

< 0.2 evt /(ton.year.kev)

ExpectaIons in 1-12 keV search window, 1t FV, single scatters, before ER/NR discrimination.

JCAP04 (2016) 027

Nuclear Recoil Background

- Radiogenic neutrons from $(α, n)$ reactions and fission from 238U and 232Th: reduced via careful materials selection, event multiplicity and fiducializaIon
- Cosmogenic μ-induced neutrons significantly reduced by rock overburden and muon veto
- •Coherent elastic v-nucleus scattering, constrained by ⁸B neutrino flux and measurements, is an irreducible background at very low energy (1 keV) Expectations in 4-50 keV search window, 1t FV, single scatters

JCAP04 (2016) 027

Surface Background

Corrected S1 [PE]

 E_3

S2 Bottom

g 2.75 2.50

 $rac{5}{9}$ 2.25
 $rac{5}{9}$ 2.00

 $1.7₂$

3.50

 3.2

3.00

- Charge accumulation on the PTFE surfaces \rightarrow **²²²Rn** progeny (Pb210 and Po210) plate-out on PTFE surface produce events with reduced S2 \rightarrow S2 can be mis-reconstructed into NR signal region
- Suppressed by fiducialization of volume
- Data-driven model derived from surface event control samples

ROI: 1.3

Julien Masbou, GraSPA 2019, 22nd July 2019

?Rn

Po

NO1 1.37

RDL 1T

Counts / bin

:At

Bi

 20 Min

 $\begin{array}{c} 210 \\ 81 \end{array}$

PandaX II

Particle and Astrophysical Xenon Experiments

Mar. 9-Jun 30 2016, in total 98.7 live-day of under slightly different conditions (optimization of drift and extraction fields).

Julien Masbou, Moriond EW 2017, 23rd March 2017 ⁶⁵

PandaX II new results SI limits

PandaX-II @ CJPL (China)

- 60 cm x 60 cm, ~400 kg fiducial
- 2nd largest operating LXe TPC
- -3.3×10^4 kg.day = 0.1 t.year
- No excess
-

Particle and Astrophysical Xenon Experiments

Julien Masbou, Moriond EW 2017, 23rd March 2017

A common approach is to blind oneself to events in the signal regions but it often blinds us to rare backgrounds and pathologies

Instead of traditional blinding, we employ a technique where fake signal events ("salt") are injected into data stream. NOT SIMULATION!!

Julien Masbou, Moriond EW 2017, 23rd March 2017 67

LUX new results SI limits

LUX @ SURF (USA)

- $-$ 49 cm x 49 cm, \sim 100kg fiducial
- 332 live-days
- -3.4×10^4 kg.day = 0.1 t.year
- No excess
- Stopped

Large Underground Xenon experiment *PRL, 116, 161301 (2016) arXiv: 1608.07648* 10^{-42} LUX WS2013 cross section [cm 10^{-43} DateSto 2016 10^{-44} nucleon 10^{-45} 10^{-46}

Julien Masbou, Moriond EW 2017, 23rd March 2017

 $10¹$

 $10²$

 $10³$

WIMP Mass $[GeV/c^2]$

 $10⁴$

 $10³$

 $10²$

 $10¹$

 $10⁰$

 10^{-1}

 10^{-2}

 $8_{\rm B}$

 10^{5}

LUX new results SD limits

- $-$ 48 cm x 48 cm, \sim 100 kg fiducial
- 332 live-days
- -3.4×10^4 kg.day = 0.1 t.year _{- No} excess **CERN 120 and SHOW CONGLEV**
Results shown 3 days ago
Results shown 3 days ago
-

Improvement of a factor of six compared with the results from the first science run -95 days (PRL, 116, 161302 (2016))

Large Underground Xenon experiment

(pictures with the courtesy of Cláudio Silva - LUX Collaboration)

@ Moriond VHEPU

Julien Masbou, Moriond EW 2017, 23rd March 2017 ⁶⁹

XENON1T : the near future

- **Science data** acquired until the earthquake (Jan. 18th) being analyzed
- Electronic recoil band determined from **Rn220 calibration**
- Nuclear recoil (signal region) data from **AmBe neutron source**
- Data corrections and processor performance tested on **83mKr data**

XENON1T: Commissioning & First Run

- Started commissioning in April 2016 with first fill Other subsystems came online
- First Calibration with $137Cs$ y source
- Purity have increase Full TPC visible
- Lowest background level of all LXe experiments

Julien Masbou, Moriond EW 2017, 23rd March 2017 11

XENON1T: Expected sensitivity

Julien Masbou, Moriond EW 2017, 23rd March 2017 12^{72}
Perspectives

And other analysis already published or to come:

- Axions / ALP
- $2v$ double electron capture on 124Xe
- Low mass
- Effective field theories
- **Calibration**
- …
- Stay tuned !

PandaX-II continue data taking with ~400kg

XENONnT & LZ construction is starting…

XENON1T is analyzing Science Run 0 !

Upgrade: XENONnT

- Quick upgrade of TPC and inner cryostat
- All major systems remain unchanged
- Construct TPC in parallel to XENON1T operation
- Upgrade starting 2018

Julien Masbou, GraSPA 2019, 22nd July 2019 74

Future: LZ & XENONnT

XENONnT:

- Quick upgrade of TPC and inner cryostat
- All major systems remain unchanged
- Construct TPC in parallel to XENON1T operation
- Upgrade starting 2018
- 8 tons total, 6 tons active

$LZ = LUX + ZEPLIN$

- Same location than LUX
- Turning on by 2020 with 1 000 initial live-days
- 10 tons total, 7 tons active,

Julien Masbou, GraSPA 2019, 22nd July 2019

Far future: DARWIN the ultimate detector

JCAP 1611 (2016) no.11, 017 arXiv:1606.07001

- Aim at sensitivity of a few 10⁻⁴⁹ cm², limited by irreducible ν-backgrounds
- R&D started
- 50 tons total LXe 40 tons TPC 30 tons fiducial

Julien Masbou, GraSPA 2019, 22nd July 2019