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Goal of the lectures
- Selected topics and instruments in astroparticle physics
- Complexity of data analysis (illustration with AMS-02)
- Variety of detection principles, ‘research activities’, etc.
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Hammer-AïtoffMercator

1. Introduction

Mapping the sphere to 2D view

Hammer-Aitoff (and Mollweide) are equal area projections:
   → phenomena per unit area are shown in correct proportion
   N.B.: no projection can be both equal-area and conformal 

(distorts angles, hence shapes)

To go further: representations of celestial 
coordinates in FITS, Calabretta & Greisen, 

A&A 395, 1077 (2002)

http://adsabs.harvard.edu/abs/2002A&A...395.1077C


  

Galactic coordinates: the Milky Way

1. Introduction

Milky Way ID

Stars ~1011→  5.1010 M⊙

Gas ~ 10% → 5.109 M⊙

Total mass → 2.1012 M⊙

DGC-⊙~ 8 kpc
RMW ~ 15 kpc
RDM ~ 300 kpc

Artist’s view of the Milky Way – NASA/JPL-Caltech/R. Hurt

Unit conversion
Mass
1 M⊙~ 1057 GeV

~ 2.1030 kg
~ 3.105 M⊕

Distance
1 pc ~ 3.1016 m

~ 2.105 AU
~ 3.26 ly

You are here



  

   1) Introduction: projections and coordinates
   2) The gamma-ray sky tour
   3) Air showers and detection techniques (CRs)
   4) Fermi-LAT, H.E.S.S., and exp. activities
   5) Constraints on dark matter from γ-rays

Motivation 
→ Diffuse emission and origin

→ Sources of non-thermal emissions
→ GeV vs TeV sky



  

2. The γ-ray sky

Diffuse emission: hadronic origin
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Diffuse emission in disc = galactic
→ prop. to HI column density (21 cm)

→ Total intensity ~ p0 production

OSO-3 (>100 MeV)
[16 months]

+



  

2. The γ-ray sky

Diffuse emission: spatial dependence (1)

g He
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_p
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p

GCRs (p, He)

Diffuse emission in disc = galactic
→ prop. to HI column density (21 cm)

→ Total intensity ~ p0 production

Mayer-Hasselwander et al., A&A 105, 164 (1982)

Signal in the disc (b=0):
origin of the different intensity peaks?

COS-B (70-150 MeV)
[4 years of data]

Diffuse hadronic emission

Intensity at b=0

+

ISM (H, He)



  

2. The γ-ray sky

Diffuse emission: spatial dependence (1)

g He

e-

_p

e+

p

GCRs (p, He)

Diffuse emission in disk = galactic
→ prop. to HI column density (21 cm)

→ Total intensity ~ p0 production

Mayer-Hasselwander et al., A&A 105, 164 (1982) Intensity at b=0Mayer-Hasselwander et al., A&A 105, 164 (1982)

→ Correlations with Perseus arm (l=100°-140°), spiral arm in Carina (l=285°)

Point 
source

Point 
source

COS-B (70-150 MeV)
[4 years of data]

Diffuse hadronic emission

+

ISM (H, He)



  

2. The γ-ray sky

Diffuse emission: spatial dependence (2)

g He

e-

_p

e+

p

GCRs (p, He)

Diffuse emission in disk = galactic
→ prop. to HI column density (21 cm)

→ Total intensity ~ p0 production

Diffuse hadronic emission

Point-source 
subtracted

COS-B (70-150 MeV)

Signal perpendicular to the disc: 
origin of extended emission?

Lat.

+

ISM (H, He)



  

2. The γ-ray sky

Diffuse emission: spatial dependence (2)

g He

e-

_p

e+

p

GCRs (p, He)

Diffuse emission in disk = galactic
→ prop. to HI column density (21 cm)

→ Total intensity ~ p0 production
+ additional leptonic emission

(mostly IC, synchrotron)

Point-source 
subtracted

COS-B (70-150 MeV) Lat.
electron

radio
waves

B

→ Broader than ‘gas’ distribution

+ leptonic emission!
Synchrotron emission Inverse Compton scattering

+

ISM (H, He)

Diffuse hadronic emission



  

By the way: how to get the diffuse emission?
(1) Count the number of photons 
(photons-instrument background)

(2) Subtract point sources

- =

EGRET 
(>100 MeV)

What remains 
should be the 

diffuse 
emission

2. The γ-ray sky

In real life
(i) Source intrinsic properties

-  point-like sources (e.g., SN remnants, AGN...)
-  extended emission (e.g. plerions, GMC in the vicinity of a source...)
-  diffuse-like emission (DE from the galactic disk, ridge, extragalactic DE...)

(ii) Analysis method and/or assumptions
2008: new EGRET analysis, 188  sources instead of 271!  [Casandjian & Grenier, A&A 489, 849]

(iii) Angular resolution and/or sensitivity of the instrument
1999: OSSE find that 50% DE for soft g-ray (<300 keV)     [Kinzer et al., ApJ 515, 215]
2000: Hint at unresolved point sources HIREGS [Boggs et al.] + OSSE&RXTE [Valinia et al.]
2004: INTEGRAL find almost no diffuse emission [Lebrun, Terrier et al., Nature 428, 293]

→ Identifying the truly diffuse emission is always a very difficult task



  

Fermi-LAT (> 1 GeV, 60 month results)

2. The γ-ray sky

Indirect dark matter detection =
search for dark matter signature in this (astrophysical) mess



  

Fermi-LAT (> 1 GeV, 60 month results)

2. The γ-ray sky

Pulsars
[rapidly rotating neutron stars]



  

Fermi-LAT (> 1 GeV, 60 month results)

2. The γ-ray sky

Active galaxies and blazars
[powered by 106 M⊙ black holes]



  

Fermi-LAT (> 1 GeV, 60 month results)

2. The γ-ray sky

Normal  and
starburst galaxies



  

Fermi-LAT (> 1 GeV, 60 month results)

2. The γ-ray sky

Supernova remnants
(and high mass binary systems, 

globular clusters...)



  

Comparison with H.E.S.S. survey (> 1 TeV, 10 years)

2. The γ-ray sky

TeV sky ≠ GeV sky
→ less diffuse emission(?)



  

   1) Introduction: projections and coordinates
   2) The gamma-ray sky tour
   3) Air showers and detection techniques (CRs)
   4) Fermi-LAT, H.E.S.S., and exp. activities
   5) Constraints on dark matter from γ-rays

Reminder
Fluxes too small to be measured by 
instruments above the atmosphere
→ Use atmosphere as a “detector”

Notions covered here
→ Electromagnetic vs hadronic showers

→ Detector types using atmospheric showers
→ Rejection and calibration



  

High-energy photon interaction

Dominant 
mechanism 
GeV-TeV

is pair 
production

3. Interactions/showers



  

High energy lepton interaction

→ About same interaction length as pair production

Bremsstrahlung emission
(in Coulomb field of the nucleus)

3. Interactions/showers



  

Electromagnetic air shower

Electromagnetic radiation length X0

~ 40 g/cm2 in dry air

Calorimeter thicknesses
Particle physics @ LHC: ~25 X0

γ-ray satellites: ~10 X0

Atmosphere: ~27 X0

Depth of shower maximum zmax

Homogeneous calorimeter ∝ log(E0)
Atmosphere: ~ 9 km – 8.4 km × log 

(log (E0/1 TeV)

Hütten, PhD thesis (2016)

3. Interactions/showers



  

Electromagnetic air shower

Electromagnetic radiation length X0

~ 40 g/cm2 in dry air

Calorimeter thicknesses
Particle physics @ LHC: ~25 X0

γ-ray satellites: ~10 X0

Atmosphere: ~27 X0

Depth of shower maximum zmax

Homogeneous calorimeter ∝ log(E0)
Atmosphere: ~ 9 km – 8.4 km × log 

(log (E0/1 TeV)

And additional processes, mainly at low energy
● multiple scattering off charged particles (shower broadening)
● E losses (ionisation and atomic excitation) → shower extinction below 83 MeV)
● Electron scattering and positron annihilation (10% electron excess → radio signal)
● Earth’s magnetic field (shower broadening in the East-West direction)
● ...

Hütten, PhD thesis (2016)

3. Interactions/showers



  

Hadronic air shower
Hütten, PhD thesis (2016)

No simple description:
- nuclear interaction length
- decay lengths for unstable particles
- radiation length

→  no universal scaling

Sub-showers:
- Hadronic (n, π and K mesons)
- Electromagnetic (π0 decay)

and particles:
- High energy μ (π± and K± decay)
- Atmospheric ν (π±, K± and μ± decay)

3. Interactions/showers



  

Leptonic vs hadronic shower: Monte Carlo simulation

3. Interactions/showers

Aharonian et al. (2008)

Geometry and variability (shower to shower)
→ Leptonic shower: simple geometry, small variability
→ Hadronic shower: complicated geometry, large variability



  

Main detection techniques (using Earth’s atmosphere)

Identification capability depends on
● Particle nature
● Particle energy
● Background for the particle

Ideally, we would like to know
● Energy of the primary particle
● Direction of the primary particle
● Primary particle nature

3. Interactions/showers

Water pond 
[MILAGRO, HAWC]

→ Target: PeV charged cosmic rays
→ Signal: Cerenkov light (pond)

● Direction: timing information
● E: deposited E in pound
● Identity: muon content of shower

Cerenkov detectors
[H.E.S.S., CTA]

→ Target: TeV-PeV γ-rays
→ Signal: Cerenkov light (atmosphere)

● Direction: stereoscopy
● E: EM shower properties
● Identity: bkd reject. + cut on position

Hybrid detectors
[Pierre Auger obs.]

→ Target: UHECRs
→ Signal: fluorescence light 
(atmosphere) / surface water detectors

● Direction: timing+stereoscopy
● E: E in SD or light (cross-calib.)
● Identity: shower content



  

   1) Introduction: projections and coordinates
   2) The gamma-ray sky tour
   3) Air showers and detection techniques (CRs)
   4) Fermi-LAT, H.E.S.S., and exp. activities
   5) Constraints on dark matter from γ-rays

Motivation 
→ Ground and satellite γ-ray detectors

→ Important experimental aspects to keep in mind
→ Research activities in a collaboration



  

Rejection factor is crucial for gamma-rays

Question: How can you reduce the background in space/ground detector?

4. γ-ray experiments



  

Fermi-LAT vs Cerenkov detectors

Segmented electromagnetic calorimeter
→ charged CRs vetoed by anticoincidence
→ e- and e+ direction in tracker
→  E from calorimeter

4. γ-ray experiments

Fermi-LAT 
~ 12 countries, 90 institutes, 400 researchers

H.E.S.S.
~ 13 countries, 45 institutes, 250 researchers

MAGIC (La Palma) H.E.S.S. (Namibia)

VERITAS (Arizona)
~12-17 m mirrors

Cerenkov light
→ hadrons vetoed by image shape
→ direction from stereoscopy
→  E from shower shape



  

Many crucial notions not covered...

→ Field of view
→ Duty cycle

→ γ-ray spectrum
→ Sensitivity

→ Effective area/acceptance/rejection capabilities
→ Angular/energy resolution

Question: how would you explain the difference between
Fermi-LAT and H.E.S.S. “footprint” (first light ~10 years ago for both)?

4. γ-ray experiments



  

… in any case, γ-ray astronomy has a bright future

De Naurois & Mazin, arXiv:1511.00463

→ Field of view
→ Duty cycle

→ γ-ray spectrum
→ Sensitivity

→ Effective area/acceptance/rejection capabilities
→ Angular/energy resolution 4. γ-ray experiments

https://arxiv.org/abs/1511.00463


  

More on energy and position calibration

Question: what generic procedures can you think of to ensure 
→ Emeasured =  Etrue?
→ correct source reconstruction

● Pre-flight calibration
→ Test beams (e.g., @ CERN)
→ Monte Carlo simulation

● In-flight (on-line) calibration
→ Use specific data samples with known properties
→ Use reference source (Crab nebula)
→ Calibrate position from bright sources

● Inter-calibration
→ Internal calibration system (e.g., diodes)
→ Hybrid detectors (e.g., AUGER)

4. γ-ray experiments



  

More on research activities

Question: what do you think we are doing (at the various stages of experiments)?

Before starting a new project
● Scientific goal and expected return (must involve large enough community)
● Proof of concept (+validation by Monte Carlo)
● Design (mechanics, electronics…), computing resources, cost evaluation

→ Go to funding agencies

During construction
● Build sub-detectors, sub-systems
● Design software analysis
● Supervise integration
● ...

Starting/during exploitation
● Monitor stability of instrument
● Calibration (more Monte Carlo)
● Design analysis methods/software for your physics problem/specific source
● Collaborate/compete with your colleagues/community
● Write papers, give talks (collaboration and/or international meetings)

→ Exciting science and fun for everyone’s taste!
4. γ-ray experiments



  

   1) Introduction: projections and coordinates
   2) The gamma-ray sky tour
   3) Air showers and detection techniques (CRs)
   4) Fermi-LAT, H.E.S.S., and exp. activities
   5) Constraints on dark matter from γ-rays

Motivation 
→ Connect theoretical/experimental lectures

→ Dark matter distributions and targets
→ Current limits from DM indirect detection



  

SM particle

SM particle

WIMP

WIMP

New physics: a possible candidate, 
Weakly Interactive Massive Particle 
● Mass: GeV to TeV (mp=1GeV)
● Interaction strength: weak
● Relic density: must satisfy Planck data

® <sv> ~ 3 ´ 10-26 cm3 s-1

Standard model of particle physics 
● Particles: electrons, n, quarks
● Interactions: electromag., weak, strong
● Carriers (bosons): g, (W,,Z), gluons

Schematic view of interactions

® SuperSymmetry (SUSY) 
naturally leads to this value 

(“WIMP miracle”)

Dark matter candidate: WIMP scenario

5. γ-rays and dark matter

Indirect detection

Photons (and neutrinos)→ g-ray (and n) astronomy
Fermi-LAT, HESS, MAGIC, CTA...

Charged particles → galactic cosmic rays
PAMELA, AMS-02...

Many
theories,

candidates,
masses



  

Particle physics

Limit on DM annihilation cross-section <sv>

5. γ-rays and dark matter

  Weakly Interacting 
Massive Particles

m WIMP~ 0.1 – 100 TeV



  

Dark matter-induced signal strength

Particle physics

From numerical
simulations or data

Astrophysics

5. γ-rays and dark matter

  Weakly Interacting 
Massive Particles

m WIMP~ 0.1 – 100 TeV

Dark matter distribution ρ

Question: what target would you pick?

→ Dense (~ ∫ ρ2),  close (1/d2), 
and no astrophysical background



  

Dark matter-induced signal strength

Particle physics Astrophysics

5. γ-rays and dark matter

Dark matter distributionFrom ρ to J to DM-induced γ-rays
● ρ2 integrated along the line-of-sight
● DM annihilation spectrum

Synthetic skymap from
public tool CLUMPY: 

http://lpsc.in2p3.fr/clumpy

http://lpsc.in2p3.fr/clumpy


  

Dark matter-induced signal strength

Particle physics Astrophysics

5. γ-rays and dark matter

Dark matter distribution
vs



  

Dark matter-induced signal strength

Particle physics Astrophysics

5. γ-rays and dark matter

Fermi-LAT (since 2008)

● Space-borne
● 30 MeV – 300 GeV
● Resolution: 1° – 0.1°
● Fullsky
● Signal limited

H.E.S.S. + CTA

● Ground based
● 100 GeV → 100 TeV
● Resolution: 0.2° – 0.02°
● Pointed instrument
● Background limited

Array of Cerenkov telescopes Satellite

Instrumental sensitivity

??



  

Dark matter-induced signal strength

Particle physics Astrophysics

5. γ-rays and dark matter

Array of Cerenkov telescopes Satellite

Instrumental sensitivity

??

→ After ~30 years of effort,
WIMP dark matter may be within reach 

Ackermann et al. (2014, 2015)
[15 dSphs combined, 70 months]

Fermi-LAT

http://adsabs.harvard.edu/abs/2015PhRvL.115w1301A


  

Comparison/complementarity of indirect detection targets

Conrad & Reimer, Nature 13, 224 (2017)

→ γ-rays from dSphs and antiprotons provide best targets for DM searches

5. γ-rays and dark matter

https://www.nature.com/nphys/journal/v13/n3/pdf/nphys4049.pdf
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