### Astroparticle experiment

1) Charged cosmic rays (CRs) and AMS-02 experiment

2) High-energy gamma rays: H.E.S.S. and Fermi-LAT

### **Goal of the lectures**

- Selected topics and instruments in astroparticle physics
- Complexity of data analysis (illustration with AMS-02)
- Variety of detection principles, 'research activities', etc.





David Maurin (LPSC) dmaurin@lpsc.in2p3.fr



GRASPA Annecy-le-Vieux 25 July 2022

### Astroparticle experiment 2

High-energy gamma rays, H.E.S.S and Fermi-LAT

- 1) Introduction: projections and coordinates
- 2) The gamma-ray sky tour
- 3) Air showers and detection techniques (CRs)
- 4) Fermi-LAT, H.E.S.S., and exp. activities
- 5) Constraints on dark matter from  $\gamma$ -rays

### Main questions in the field

- $\rightarrow$  Sources of cosmic rays
- $\rightarrow$  Origin of non-thermal emissions
  - $\rightarrow$  Dark matter indirect detection





David Maurin (LPSC) dmaurin@lpsc.in2p3.fr



GRASPA Annecy-le-Vieux 25 July 2022

### Mapping the sphere to 2D view



Hammer-Aitoff (and Mollweide) are equal area projections:
 → phenomena per unit area are shown in correct proportion
 N.B.: no projection can be both equal-area and conformal (distorts angles, hence shapes)

1. Introduction

## Galactic coordinates: the Milky Way



1) Introduction: projections and coordinates

### 2) The gamma-ray sky tour

3) Air showers and detection techniques (CRs)

4) Fermi-LAT, H.E.S.S., and exp. activities

5) Constraints on dark matter from  $\gamma$ -rays

#### Motivation

→ Diffuse emission and origin
 → Sources of non-thermal emissions
 → GeV vs TeV sky

### Diffuse emission: hadronic origin



## Diffuse emission: spatial dependence (1)



#### **Diffuse hadronic emission**

#### Signal in the disc (b=0): origin of the different intensity peaks?



## Diffuse emission: spatial dependence (1)



#### **Diffuse hadronic emission**

# Diffuse emission: spatial dependence (2)



#### **Diffuse hadronic emission**



**Diffuse emission in disk = galactic**   $\rightarrow$  prop. to H<sub>I</sub> column density (21 cm)  $\rightarrow$  Total intensity ~  $\pi^0$  production

Point-source subtracted

Signal perpendicular to the disc: origin of extended emission?



## Diffuse emission: spatial dependence (2)



#### **Diffuse hadronic emission**

# By the way: how to get the diffuse emission?



In real life

#### (i) Source intrinsic properties

- point-like sources (e.g., SN remnants, AGN ...)
- extended emission (e.g. plerions, GMC in the vicinity of a source...)
- diffuse-like emission (DE from the galactic disk, ridge, extragalactic DE...)

#### (ii) Analysis method and/or assumptions

2008: new EGRET analysis, 188 sources instead of 271! [Casandjian & Grenier, A&A 489, 849]

#### (iii) Angular resolution and/or sensitivity of the instrument

1999: OSSE find that 50% DE for soft γ-ray (<300 keV) [Kinzer *et al.*, ApJ 515, 215]
2000: Hint at unresolved point sources HIREGS [Boggs *et al.*] + OSSE&RXTE [Valinia *et al.*]
2004: INTEGRAL find almost no diffuse emission [Lebrun, Terrier *et al.*, Nature 428, 293]

 $\rightarrow$  Identifying the truly diffuse emission is always a very difficult task



Indirect dark matter detection = search for dark matter signature in this (astrophysical) mess



**Pulsars** [rapidly rotating neutron stars]

![](_page_13_Figure_1.jpeg)

Active galaxies and blazars [powered by 10<sup>6</sup> M<sub>o</sub> black holes]

![](_page_14_Figure_1.jpeg)

Normal and starburst galaxies

![](_page_15_Figure_1.jpeg)

#### Supernova remnants

(and high mass binary systems, globular clusters...)

The γ-ray sky

# Comparison with H.E.S.S. survey (> 1 TeV, 10 years)

![](_page_16_Figure_1.jpeg)

TeV sky  $\neq$  GeV sky  $\rightarrow$  less diffuse emission(?)

![](_page_17_Figure_0.jpeg)

Introduction: projections and coordinates
 The gamma-ray sky tour
 Air showers and detection techniques (CRs)
 Fermi-LAT, H.E.S.S., and exp. activities
 Constraints on dark matter from γ-rays

#### Reminder

Fluxes too small to be measured by instruments above the atmosphere  $\rightarrow$  Use atmosphere as a "detector"

### Notions covered here

→ Electromagnetic vs hadronic showers
 → Detector types using atmospheric showers
 → Rejection and calibration

![](_page_17_Picture_6.jpeg)

## High-energy photon interaction

![](_page_18_Figure_1.jpeg)

3. Interactions/showers

### High energy lepton interaction

Bremsstrahlung emission (in Coulomb field of the nucleus)

![](_page_19_Figure_2.jpeg)

 $\rightarrow$  About same interaction length as pair production

3. Interactions/showers

### Electromagnetic air shower

![](_page_20_Figure_1.jpeg)

Hütten, PhD thesis (2016)

 $\begin{array}{l} \mbox{Electromagnetic radiation length $X_0$} \\ \sim 40 \ g/cm^2 \ in \ dry \ air \end{array}$ 

#### **Calorimeter thicknesses**

Particle physics @ LHC:  $\sim 25 X_0$  $\gamma$ -ray satellites:  $\sim 10 X_0$ Atmosphere:  $\sim 27 X_0$ 

#### Depth of shower maximum z<sub>max</sub>

 $\begin{array}{l} \text{Homogeneous calorimeter} \propto \log(E_0) \\ \text{Atmosphere:} \sim 9 \text{ km} - 8.4 \text{ km} \times \log \\ (\log (E_0/1 \text{ TeV}) \end{array}$ 

## Electromagnetic air shower

![](_page_21_Figure_1.jpeg)

Hütten, PhD thesis (2016)

 $\begin{array}{l} \mbox{Electromagnetic radiation length $X_0$} \\ \sim 40 \ g/cm^2 \ in \ dry \ air \end{array}$ 

Calorimeter thicknesses Particle physics @ LHC:  $\sim 25 X_0$  $\gamma$ -ray satellites:  $\sim 10 X_0$ Atmosphere:  $\sim 27 X_0$ 

 $\begin{array}{l} \mbox{Depth of shower maximum } z_{max} \\ \mbox{Homogeneous calorimeter } \propto \log(E_0) \\ \mbox{Atmosphere: } \sim 9 \ \mbox{km} - 8.4 \ \mbox{km} \times \log \\ \mbox{(log (E_0/1 \ TeV))} \end{array}$ 

#### And additional processes, mainly at low energy

- multiple scattering off charged particles (shower broadening)
- E losses (ionisation and atomic excitation)  $\rightarrow$  shower extinction below 83 MeV)
- Electron scattering and positron annihilation (10% electron excess  $\rightarrow$  radio signal)
- Earth's magnetic field (shower broadening in the East-West direction)
- ..

#### 3. Interactions/showers

## Hadronic air shower

Hütten, PhD thesis (2016) top of atmosphere  $\sim \chi_{\rm int} \approx 100 \, {\rm g/cm^2}$ primary p first interaction π  $\pi^0$  $K^+$ wwwww n  $\pi^0$  $\pi$  $\mu^{-}$  $\nu_{\mu}$  $\mu^+$ electromagnetic subshower hadronic  $\nu_{\mu}$ sea level

No simple description:

- nuclear interaction length
- decay lengths for unstable particles
- radiation length
  - $\rightarrow$  no universal scaling

Sub-showers:

- Hadronic (n,  $\pi$  and K mesons)
- Electromagnetic ( $\pi^0$  decay)

and particles:

- High energy  $\mu$  ( $\pi^{\pm}$  and  $K^{\pm}$  decay)
- Atmospheric  $\nu$  ( $\pi^{\scriptscriptstyle\pm},\,K^{\scriptscriptstyle\pm}$  and  $\mu^{\scriptscriptstyle\pm}$  decay)

## Leptonic vs hadronic shower: Monte Carlo simulation

![](_page_23_Figure_1.jpeg)

3. Interactions/showers

# Main detection techniques (using Earth's atmosphere)

#### Ideally, we would like to know

- Energy of the primary particle
- Direction of the primary particle
- Primary particle nature

#### Identification capability depends on

- Particle nature
- Particle energy
- Background for the particle

![](_page_24_Figure_9.jpeg)

#### 3. Interactions/showers

1) Introduction: projections and coordinates

2) The gamma-ray sky tour

3) Air showers and detection techniques (CRs)

4) Fermi-LAT, H.E.S.S., and exp. activities

5) Constraints on dark matter from  $\gamma$ -rays

#### Motivation

 $\rightarrow$  Ground and satellite  $\gamma$ -ray detectors  $\rightarrow$  Important experimental aspects to keep in mind  $\rightarrow$  Research activities in a collaboration

### Rejection factor is crucial for gamma-rays

![](_page_26_Figure_1.jpeg)

Question: How can you reduce the background in space/ground detector?

## Fermi-LAT vs Cerenkov detectors

![](_page_27_Figure_1.jpeg)

#### Segmented electromagnetic calorimeter

- $\rightarrow$  charged CRs vetoed by anticoincidence
- $\rightarrow e^{\scriptscriptstyle -}$  and  $e^{\scriptscriptstyle +}$  direction in tracker
- $\rightarrow$  E from calorimeter

**H.E.S.S.** ~ 13 countries, 45 institutes, 250 researchers

![](_page_27_Picture_7.jpeg)

# Cerenkov light $\rightarrow$ hadrons vetoed by image shape $\rightarrow$ direction from stereoscopy $\rightarrow$ E from shower shape

Ground coordinate system

### Many crucial notions not covered...

![](_page_28_Figure_1.jpeg)

Question: how would you explain the difference between Fermi-LAT and H.E.S.S. "footprint" (first light ~10 years ago for both)?

 $\rightarrow$  Effective area/acceptance/rejection capabilities

 $\rightarrow$  Angular/energy resolution

### ... in any case, $\gamma$ -ray astronomy has a bright future

![](_page_29_Figure_1.jpeg)

 $\rightarrow$  Angular/energy resolution

### More on energy and position calibration

Question: what generic procedures can you think of to ensure

- $\rightarrow E_{\text{measured}} = E_{\text{true}}?$
- $\rightarrow$  correct source reconstruction
- Pre-flight calibration
  - $\rightarrow$  Test beams (e.g., @ CERN)
  - $\rightarrow$  Monte Carlo simulation
- In-flight (on-line) calibration
  - $\rightarrow$  Use specific data samples with known properties
  - $\rightarrow$  Use reference source (Crab nebula)
  - $\rightarrow$  Calibrate position from bright sources
- Inter-calibration
  - $\rightarrow$  Internal calibration system (e.g., diodes)
  - $\rightarrow$  Hybrid detectors (e.g., AUGER)

### More on research activities

Question: what do you think we are doing (at the various stages of experiments)?

#### Before starting a new project

- Scientific goal and expected return (must involve large enough community)
- Proof of concept (+validation by Monte Carlo)
- Design (mechanics, electronics...), computing resources, cost evaluation  $\rightarrow$  Go to funding agencies

#### **During construction**

- Build sub-detectors, sub-systems
- Design software analysis
- Supervise integration
- ...

#### Starting/during exploitation

- Monitor stability of instrument
- Calibration (more Monte Carlo)
- Design analysis methods/software for your physics problem/specific source
- Collaborate/compete with your colleagues/community
- Write papers, give talks (collaboration and/or international meetings)

 $\rightarrow$  *Exciting science and fun for everyone's taste!* 

- 1) Introduction: projections and coordinates
- 2) The gamma-ray sky tour
- 3) Air showers and detection techniques (CRs)
- 4) Fermi-LAT, H.E.S.S., and exp. activities

5) Constraints on dark matter from  $\gamma$ -rays

#### Motivation

- $\rightarrow$  Connect theoretical/experimental lectures
  - $\rightarrow$  Dark matter distributions and targets
- $\rightarrow$  Current limits from DM indirect detection

### Dark matter candidate: WIMP scenario

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

5.  $\gamma$ -rays and dark matter

### Limit on DM annihilation cross-section $\langle \sigma v \rangle$

![](_page_34_Figure_1.jpeg)

5. γ-rays and dark matter

![](_page_35_Figure_1.jpeg)

5.  $\gamma$ -rays and dark matter

![](_page_36_Figure_1.jpeg)

![](_page_37_Figure_1.jpeg)

5.  $\gamma$ -rays and dark matter

![](_page_38_Figure_1.jpeg)

#### 5. $\gamma$ -rays and dark matter

![](_page_39_Figure_1.jpeg)

### Comparison/complementarity of indirect detection targets

![](_page_40_Figure_1.jpeg)

 $\rightarrow \gamma$ -rays from dSphs and antiprotons provide best targets for DM searches

5.  $\gamma$ -rays and dark matter