Astroparticle experiment

1) Charged cosmic rays (CRs) and AMS-02 experiment

2) High-energy gamma rays: H.E.S.S. and Fermi-LAT

Goal of the lectures

- Selected topics and instruments in astroparticle physics
- Complexity of data analysis (illustration with AMS-02)
- Variety of detection principles, 'research activities', etc.

David Maurin (LPSC) dmaurin@lpsc.in2p3.fr

GRASPA Annecy-le-Vieux 25 July 2022

Astroparticle experiment 2

High-energy gamma rays, H.E.S.S and Fermi-LAT

1) Introduction: projections and coordinates

- 2) The gamma-ray sky tour
- 3) Air showers and detection techniques (CRs)
- 4) Fermi-LAT, H.E.S.S., and exp. activities
- 5) Constraints on dark matter from γ-rays

Main questions in the field

- \rightarrow Sources of cosmic rays
- \rightarrow Origin of non-thermal emissions
	- \rightarrow Dark matter indirect detection

David Maurin (LPSC) dmaurin@lpsc.in2p3.fr

GRASPA Annecy-le-Vieux 25 July 2022

Mapping the sphere to 2D view

Hammer-Aitoff (and Mollweide) are equal area projections: \rightarrow phenomena per unit area are shown in correct proportion N.B.: no projection can be both equal-area and conformal (distorts angles, hence shapes)

1. Introduction

Galactic coordinates: the Milky Way

1) Introduction: projections and coordinates

2) The gamma-ray sky tour

3) Air showers and detection techniques (CRs)

4) Fermi-LAT, H.E.S.S., and exp. activities

5) Constraints on dark matter from γ-rays

Motivation

 \rightarrow Diffuse emission and origin \rightarrow Sources of non-thermal emissions \rightarrow GeV vs TeV sky

Diffuse emission: hadronic origin

Diffuse emission: spatial dependence (1)

Diffuse hadronic emission

Signal in the disc $(b=0)$: origin of the different intensity peaks?

Diffuse emission: spatial dependence (1)

Diffuse hadronic emission

Diffuse emission: spatial dependence (2)

Diffuse hadronic emission

Diffuse emission in disk = galactic \rightarrow prop. to H_I column density (21 cm) \rightarrow Total intensity $\sim \pi^0$ production

> **Point-source subtracted**

Signal perpendicular to the disc: origin of extended emission?

Diffuse emission: spatial dependence (2)

Diffuse hadronic emission

By the way: how to get the diffuse emission?

In real life

(i) Source intrinsic properties

- point-like sources (e.g., SN remnants, AGN...)
- extended emission (e.g. plerions, GMC in the vicinity of a source...)
- diffuse-like emission (DE from the galactic disk, ridge, extragalactic DE...)

(ii) Analysis method and/or assumptions

2008: new EGRET analysis, 188 sources instead of 271! [Casandjian & Grenier, A&A **489**, 849]

(iii) Angular resolution and/or sensitivity of the instrument

1999: OSSE find that 50% DE for soft g-ray (<300 keV) [Kinzer *et al.*, ApJ **515**, 215] 2000: Hint at unresolved point sources HIREGS [Boggs *et al.*] + OSSE&RXTE [Valinia *et al.*] 2004: INTEGRAL find almost no diffuse emission [Lebrun, Terrier *et al.*, Nature **428**, 293]

 \rightarrow Identifying the truly diffuse emission is always a very difficult task

Indirect dark matter detection = search for dark matter signature in this (astrophysical) mess

Pulsars [rapidly rotating neutron stars]

Active galaxies and blazars [powered by 10⁶M_☉ black holes]

Normal and starburst galaxies

Supernova remnants

(and high mass binary systems, globular clusters...)

Comparison with H.E.S.S. survey $(> 1$ TeV, 10 years)

TeV sky ≠ GeV sky \rightarrow less diffuse emission(?)

 2) The gamma-ray sky tour 3) Air showers and detection techniques (CRs) 4) Fermi-LAT, H.E.S.S., and exp. activities 5) Constraints on dark matter from γ-rays

Reminder

Fluxes too small to be measured by instruments above the atmosphere \rightarrow Use atmosphere as a "detector"

Notions covered here

 \rightarrow Electromagnetic vs hadronic showers \rightarrow Detector types using atmospheric showers \rightarrow Rejection and calibration

High-energy photon interaction

3. Interactions/showers

High energy lepton interaction

Bremsstrahlung emission (in Coulomb field of the nucleus)

 \rightarrow About same interaction length as pair production

3. Interactions/showers

Electromagnetic air shower

Hütten, PhD thesis (2016)

Electromagnetic radiation length X⁰ \sim 40 g/cm² in dry air

Calorimeter thicknesses

Particle physics ω LHC: ~25 X_0 γ-ray satellites: \sim 10 X₀ Atmosphere: \sim 27 X₀

Depth of shower maximum zmax

Homogeneous calorimeter \propto log(E₀) Atmosphere: \sim 9 km – 8.4 km \times log $(log (E_0/1 \text{ TeV})$

Electromagnetic air shower

Hütten, PhD thesis (2016)

Electromagnetic radiation length X⁰ \sim 40 g/cm² in dry air

Calorimeter thicknesses Particle physics ω LHC: ~25 X_0 γ-ray satellites: \sim 10 X₀ Atmosphere: \sim 27 X₀

Depth of shower maximum zmax Homogeneous calorimeter \propto log(E₀) Atmosphere: \sim 9 km – 8.4 km \times log $(log (E_0/1 \text{ TeV})$

And additional processes, mainly at low energy

- multiple scattering off charged particles (shower broadening)
- E losses (ionisation and atomic excitation) \rightarrow shower extinction below 83 MeV)
- Electron scattering and positron annihilation (10% electron excess \rightarrow **radio signal**)
- Earth's magnetic field (shower broadening in the East-West direction)
- ...

3. Interactions/showers

Hadronic air shower

Hütten, PhD thesis (2016)

No simple description:

- nuclear interaction length
- decay lengths for unstable particles
- radiation length
	- \rightarrow no universal scaling

Sub-showers:

- Hadronic (n, π and K mesons)
- Electromagnetic $(\pi^0$ decay)

and particles:

- High energy μ (π^{\pm} and K^{\pm} decay)
- Atmospheric $v(\pi^{\pm}, K^{\pm}$ and u^{\pm} decay)

Leptonic vs hadronic shower: Monte Carlo simulation

3. Interactions/showers

Main detection techniques (using Earth's atmosphere)

Ideally, we would like to know

- Energy of the primary particle
- Direction of the primary particle
- Primary particle nature

Identification capability depends on

- Particle nature
- Particle energy
- Background for the particle

3. Interactions/showers

1) Introduction: projections and coordinates

2) The gamma-ray sky tour

3) Air showers and detection techniques (CRs)

4) Fermi-LAT, H.E.S.S., and exp. activities

5) Constraints on dark matter from γ-rays

Motivation

 \rightarrow Ground and satellite γ -ray detectors \rightarrow Important experimental aspects to keep in mind \rightarrow Research activities in a collaboration

Rejection factor is crucial for gamma-rays

Question: How can you reduce the background in space/ground detector?

Fermi-LAT vs Cerenkov detectors

Fermi-LAT \sim 12 countries, 90 institutes, 400 researchers Large Area Telescope (LAT) covered by anti-coincidence AT heat radiators detecto $15m$ Ľ Solar panels Ku Band downlink antenna Gamma Ray Burst Monitor (GBM) **Anticoincidence Detector (background rejection) Conversion Foil Particle Tracking Detectors Calorimeter** (energy measurement)

Segmented electromagnetic calorimeter

- \rightarrow charged CRs vetoed by anticoincidence
- \rightarrow e and e⁺ direction in tracker
- \rightarrow E from calorimeter

H.E.S.S. \sim 13 countries, 45 institutes, 250 researchers

Many crucial notions not covered...

Question: how would you explain the difference between Fermi-LAT and H.E.S.S. "footprint" (first light ~10 years ago for both)?

> \rightarrow Field of view \rightarrow Duty cycle $\rightarrow \gamma$ -ray spectrum \rightarrow Sensitivity

 \rightarrow Effective area/acceptance/rejection capabilities

 \rightarrow Angular/energy resolution

in any case, *γ*-ray astronomy has a bright future

 \rightarrow Angular/energy resolution 4. γ-ray experiments

More on energy and position calibration

Question: what generic procedures can you think of to ensure

- \rightarrow E_{measured} = E_{true}?
- \rightarrow correct source reconstruction
- Pre-flight calibration
	- \rightarrow Test beams (e.g., ω CERN)
	- \rightarrow Monte Carlo simulation
- In-flight (on-line) calibration
	- \rightarrow Use specific data samples with known properties
	- \rightarrow Use reference source (Crab nebula)
	- \rightarrow Calibrate position from bright sources
- Inter-calibration
	- \rightarrow Internal calibration system (e.g., diodes)
	- \rightarrow Hybrid detectors (e.g., AUGER)

More on research activities

Question: what do you think we are doing (at the various stages of experiments)?

Before starting a new project

- Scientific goal and expected return (must involve large enough community)
- Proof of concept (+validation by Monte Carlo)
- Design (mechanics, electronics...), computing resources, cost evaluation *→ Go to funding agencies*

During construction

- Build sub-detectors, sub-systems
- Design software analysis
- Supervise integration
- \bullet ...

Starting/during exploitation

- Monitor stability of instrument
- Calibration (more Monte Carlo)
- Design analysis methods/software for your physics problem/specific source
- Collaborate/compete with your colleagues/community
- Write papers, give talks (collaboration and/or international meetings)

→ Exciting science and fun for everyone's taste!

1) Introduction: projections and coordinates

2) The gamma-ray sky tour

3) Air showers and detection techniques (CRs)

4) Fermi-LAT, H.E.S.S., and exp. activities

5) Constraints on dark matter from γ-rays

Motivation

 \rightarrow Connect theoretical/experimental lectures

 \rightarrow Dark matter distributions and targets

 \rightarrow Current limits from DM indirect detection

Dark matter candidate: WIMP scenario

Limit on DM annihilation cross-section $\langle \sigma v \rangle$

Comparison/complementarity of indirect detection targets

 \rightarrow γ -rays from dSphs and antiprotons provide best targets for DM searches