

First neutrino interaction recorded in hydrogen bubble chamber

Laura Zambelli (LAPP) GRASPA School Annecy - July 25th 2022

Neutrino Oscillation with a « historical » approach

• Produce, Detect and neutrino oscillations today & tomorrow

GRASPA'22 L. ZAMBELLI

2

Overview

• Recap on neutrino properties, sources, interactions

GRASPA'22

L. ZAMBELL

3

In the Standard Model

- $_{\odot}$ Neutrinos are leptons
- O 3 flavors linked to their corresponding charged counterpart
- $_{\rm O}$ Can only interact through weak force (through W^{\pm} and Z^0 bosons)

Key facts

- \circ Three flavors of light and active neutrinos named V_e, V_µ, V_T
 - → In 1989, LEP mesures the Z invisible decay width : $N_{\nu} = 2.984 \pm 0.008$
- Neutrinos are only left-handed
- \rightarrow Cannot couple to the Higgs field, therefore the neutrinos are considered massless in the Standard Model
- \rightarrow But they in fact do have a mass:

$$m_{\nu} < 1 \text{ eV} ; \sum m_{\nu} > 0.06 \text{ eV}$$

• Most abundant massive particule $\Phi_{sun} = 65 \times 10^9 \text{ V}_{e}/\text{cm}^2/\text{s on earth}$ $\Phi_{\text{reactor}} = 2 \times 10^{20} \, \bar{v}_{e} / s / G W_{\text{th}}$ $\Phi_{\rm atmo} = 4 \times 10^2 \, V_{e+\mu} / m^2 / s / sr$ $\Phi_{accelerator} \sim 1 \times 10^{12} \ v_{\mu}/m^2$

GRASPA'22 L. ZAMBELL

(5)

• Only interact through weak interaction

- \rightarrow Small cross section :
- $\sigma \sim 10^{-42} \,\mathrm{cm}^2 \,\mathrm{for} \,\mathrm{IBD}$
- $\sigma \sim 10^{-38} \,\mathrm{cm^2} \,\mathrm{at} \,1 \,\mathrm{GeV}$

\rightarrow 50% chance a V_e from the sun interact in you in your lifetime

Charged and neutral currents

Neutrino have no electric charge -> We cannot detect them directly

We have to :

- Wait for a neutrino to interact
- Detect the products of the interaction
- Retrieve the original neutrino flavor/direction/energy/sign

Neutrinos can only interact by weak interaction -> Through Z⁰ exchange = Neutral Currents -> Through W[±] exchange = Charged Currents

GRASPA'22 L. ZAMBELL

Neutral currents interactions

• Cannot identify the incoming neutrino flavor • All neutrino interact with same potential

GRASPA'22 L. ZAMBELL

8

Elastic scattering

Charged currents interactions

GRASPA'22 L. Zambelli

9

Charged currents interactions

The **Quasi-Elastic** interaction

The Golden Channel

V flavor & sign tagged
by the lepton

 \circ E_{v} reconstructed with the lepton kinematics :

$$E_{\nu} = \frac{m_f^2 - (m_i - E_b)^2 - m_{\mu}^2 + 2(m_i - E_b)E_{\mu}}{2(m_i - E_b - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

m_i, m_f : initial, final nucleon masses;E_b : nucleon binding energy in the nucleus

GRASPA'22 L. Zambelli

9

GRASPA'22

L. ZAMBELL

9

Charged currents interactions

The Quasi-Elastic interaction

The Golden Channel

€1.4 1.4 cm² / န္မီ0.2 10⁻¹ u_ℓ SW^+ $\Delta + +$

V flavor & sign taggedby the lepton

 \odot E_{v} reconstructed with the lepton kinematics :

$$E_{\nu} = \frac{m_f^2 - (m_i - E_b)^2 - m_{\mu}^2 + 2(m_i - E_b)E_{\mu}}{2(m_i - E_b - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

m_i, m_f : initial, final nucleon masses;E_b : nucleon binding energy in the nucleus

The **Resonant** interaction

Nucleon is excited -> Many final states

 π^+

GRASPA'22

L. ZAMBELL

9

Charged currents interactions

The Quasi-Elastic interaction

The Golden Channel

€ 1.4 cm² section / E (10⁻³ 0.4 §0.2 10⁻¹ u_ℓ W^+ $\Delta_{\underline{}}^{++}$

V flavor & sign tagged
by the lepton

 \circ E_{v} reconstructed with the lepton kinematics :

$$E_{\nu} = \frac{m_f^2 - (m_i - E_b)^2 - m_{\mu}^2 + 2(m_i - E_b)E_{\mu}}{2(m_i - E_b - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

m_i, m_f : initial, final nucleon masses;E_b : nucleon binding energy in the nucleus

The **Resonant** interaction

Nucleon is excited -> Many final states

 π^+

GRASPA'22

L. ZAMBELL

 $\left(9\right)$

Charged currents interactions

The Quasi-Elastic interaction

The Golden Channel

€1.4 1.4 cm² section / E (10^{-%} 9.0 9.0 9.0 ຮູ້0.2 10⁻¹ u_ℓ W^+ Δ^{++}

V flavor & sign tagged by the lepton

○ E_v reconstructed with the lepton kinematics :

$$E_{\nu} = \frac{m_f^2 - (m_i - E_b)^2 - m_{\mu}^2 + 2(m_i - E_b)E_{\mu}}{2(m_i - E_b - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

m_i, m_f : initial, final nucleon masses; E_b : nucleon binding energy in the nucleus

The **Resonant** interaction

 π^+

Nucleon is excited -> Many final states

Cross section increase with energy but the final states are more complex

Charged currents interactions

Interaction threshold

For CC interactions : $\nu_{\ell} + n \rightarrow \ell^- + p$

$$E_{\nu} \ge \frac{(m_{\ell} + m_p)^2 - m_n}{2m_n}$$

 $E_{thr}(v_{\mu}) = 110 \text{ MeV}$ $E_{thr}(v_{\tau}) = 3.45 \text{ GeV}$

GRASPA'22 L. Zambelli

(10)

Neutrino Energy (MeV)

<u>Principle</u> : When a charged particle crosses a medium, it looses energy through ionization. The mean amount of energy lost per cm through ionization is parametrized by the Bethe Bloch formula and depends on the particle energy ($\beta\gamma$)

 $\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$

GRASPA'22 L. ZAMBELL

<u>Principle</u> : When a charged particle crosses a medium, it looses energy through ionization. The mean amount of energy lost per cm through ionization is parametrized by the Bethe Bloch formula and depends on the particle energy ($\beta\gamma$)

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 W_{max}}{I^2} - \beta^2\right]$$

If this energy lost can be seen, one can have a 2D (or even 3D) image of the interaction. Through track topology, one can know the daughters identity.

Moreover, if this energy can be collected, one can reconstruct the energy of the daughters, and hence fully reconstruct the interacting neutrino kinematics.

GRASPA'22 L. ZAMBELL

BEBC at CERN

Bubble Chambers

Superheated fluid turns locally to gas (bubbles) when energy is deposited by a charged tracks :

scanned manually by the scanning ladies.

GRASPA'22 L. ZAMBELL

First bubble chambers where equipped with cameras, the pictures were

Liquid Scintillators

Organic liquid that scintillates when energy is deposited. In neutrino physics, often used to tag inverse β -decay interactions

The positron is quickly captured by an electron • The neutron is captured later by a catcher-atom

Savannah river experiment by Reines & Cowan in 1956

GRASPA'22 L. ZAMBELL

ve discovery !

Neutron scope

Time Projection Chamber [TPC]

Uses a chamber filled with gas or liquid with an electric field applied across. Free electrons from ionization are drifting towards the anode plane where they are collected : that gives a 2D image. The e⁻ arrival time provides the 3rd coordinates. The amount of e⁻ collected/cm is a handle to retrieve the particle identity/energy.

GRASPA'22 L. ZAMBELL

- V_{μ} interaction -Collection view 3 T 1 µ 12.50 m Collection view Induction II view 0.4(0.4 В С 0.70 m 0.70 m

ICARUS experiment in Italy (now in USA)

<u>Principle</u> : When a charged particle travels at a speed v higher than the speed of light in a medium c/n it radiates a cone of light :

GRASPA'22 L. Zambelli

15)

<u>Principle</u> : When a charged particle travels at a speed *v* higher than the speed of light in a medium c/n it radiates a cone of light : Cherenkov detectors are widely used in neutrino physics : -> Can use cheap/free medium (ultra pure water, ice, sea) -> Use photomultipliers to detect the light, very well known device -> Can have large volume : bigger volume = more chances to catch a neutrino linked to the particle energy => Excellent e/μ separation

GRASPA'22 L. ZAMBELL

15

- -> Ring shape allows particle identification ; ring characteristics (diameter, nb of photons) is

<u>Principle</u> : When a charged particle travels at a speed *v* higher than the speed of light in a medium c/n it radiates a cone of light : Cherenkov detectors are widely used in neutrino physics : -> Can use cheap/free medium (ultra pure water, ice, sea) -> Use photomultipliers to detect the light, very well known device -> Can have large volume : bigger volume = more chances to catch a neutrino linked to the particle energy => Excellent e/μ separation

GRASPA'22

L. ZAMBELL

- -> Ring shape allows particle identification ; ring characteristics (diameter, nb of photons) is
 - Particle identification using ring shape :

Super-Kamiokande in Japan

(16)

Tank of 50 kt of ultra pure water underneath a mountain, equipped with ~11k PMTs

Color = nb of photons collected

Super-Kamiokande in Japan

ICECUBE in Antartica Giant detector in ice, equipped with 5k PTMs along 86 strings up to 2.4 km below the surface

GRASPA'22 L. ZAMBELL

(16)

Tank of 50 kt of ultra pure water underneath a mountain, equipped with ~11k PMTs

Color = nb of photons collected

Color = time size = nb of photons collected

Solar neutrino flux

Most of 20th century research focused on nuclear reactions: radioactivity, fission and fusion.

Among all the consequences, it helped to understand stellar nucleosynthesis that powers stars.

GRASPA'22 L. ZAMBELL

GRASPA'22

L. ZAMBELL

(18)

Most of 20th century research focused on nuclear reactions: radioactivity, fission and fusion.

Among all the consequences, it helped to understand stellar nucleosynthesis that powers stars.

Bahcall made a prediction on the V_e flux from the sun [1964]

Neutrinos can escape the sun plasma unaffected. Detecting those neutrino would prove the fusion chain happening inside sun's core.

Solar neutrino deficit

GRASPA'22 L. Zambelli

Solar neutrino deficit

Homestake Experiment designed to detect solar neutrinos Underground detector observing Cl to Ar conversion by: $\nu_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar}^+ + e^-$

Number of Ar atom in the chamber was counted every few weeks with filters

Expected : 8.2 ± 1.8 SNU Observed : 2.56 ± 0.23 SNU **60% V_e missing**

GRASPA'22 L. ZAMBELL

19

GRASPA'22

L. ZAMBELL

(19)

Solar neutrino deficit

Homestake Experiment designed to detect solar neutrinos Underground detector observing Cl to Ar conversion by: $\nu_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar}^+ + e^-$

Number of Ar atom in the chamber was counted every few weeks with filters

Expected : 8.2 ± 1.8 SNU Observed : 2.56 ± 0.23 SNU **60% V_e missing**

The **GALLEX** and **SAGE** experiments used Ga to Ge conversion : $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

> Expected : 127 ± 12 SNU Observed : 68.1 ± 3.8 SNU

> > 50% Ve missing

GRASPA'22

L. ZAMBELL

(19)

Solar neutrino deficit

Homestake Experiment designed to detect solar neutrinos Underground detector observing Cl to Ar conversion by: $\nu_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar}^+ + e^-$

Number of Ar atom in the chamber was counted every few weeks with filters

Expected : 8.2 ± 1.8 SNU Observed : 2.56 ± 0.23 SNU **60% V_e missing**

The **GALLEX** and **SAGE** experiments used Ga to Ge conversion : $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

> Expected : 127 ± 12 SNU Observed : 68.1 ± 3.8 SNU

> > 50% Ve missing

The **Kamiokande** experiment

observed solar neutrino through elastic scattering :

 $\nu_e + e^- \rightarrow \nu_e + e^-$

45% V_e missing

Atmospheric neutrino deficit

GRASPA'22 L. Zambelli

(20)

In parallel, interest in neutrinos from cosmic rays

→ When cosmic rays hit earth, they interact with the atmosphere and produce pions and muons

$$\begin{array}{ll} p + atm \to \pi^+ + \dots & \text{At ground, we exp} \\ \pi^+ \to \mu^+ + \nu_\mu & \mathbf{V}_\mu : \mathbf{V}_e = 2:1 \\ \mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu \end{array}$$

Atmospheric neutrino deficit

HH

GRASPA'22 L. ZAMBELLI

In parallel, interest in neutrinos from cosmic rays

→ When cosmic rays hit earth, they interact with the atmosphere and produce pions and muons

Understanding the anomalies

o Several hypothesis to explain the anomalies:

- Problems with fluxes computations, experiments
- Neutrino behavior: V-decay, V-decoherence, flavor changing neutral currents, oscillations, ...

unitary mixing matrix (the PMNS matrix) :

Where PMNS stands for Pontecorvo-Maki-Nakagawa-Sakata

- In 1957, Pontecorvo suggested the $v \rightarrow \bar{v}$ oscillations, in analogy with $K^0 \rightarrow K^0$ mixing
- o <u>Principle</u> : Neutrino flavor and mass eigenstates are **not superimposed** but **linked** by a 3×3
 - $|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle \quad \begin{array}{l} \texttt{a} = (\texttt{e}, \mu, \texttt{t}) := \texttt{Flavor states} \\ i = (\texttt{1}, \texttt{2}, \texttt{3}) := \texttt{Mass states} \\ \texttt{U} = \texttt{PMNS matrix} \end{array}$
 - \rightarrow Neutrinos would be massive !

Understanding the anomalies

Simplified 2 flavors case

The mixing matrix is written as : $\begin{pmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{pmatrix} =$

GRASPA'22 L. ZAMBELL

$$\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

- θ is the mixing angle
- Δm^2 is the mass splitting :

$$\Delta m^2 = m_1^2 - m_2^2$$

Understanding the anomalies

Simplified 2 flavors case

The mixing matrix is written as : $\begin{pmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{pmatrix} =$

With a source V_{α} at an energy E, the probability to detect a V_{β} at a distance L is :

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

GRASPA'22 L. Zambelli

22

$$\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

• θ is the mixing angle

$$\Delta m^2 = m_1^2 - m_2^2$$

- $\begin{pmatrix} l^2 L \\ \overline{L} \end{pmatrix}$ L : source \rightarrow detector distance
 - E : neutrino energy

Proofs of neutrino oscillations - Solar

GRASPA'22 L. ZAMBELL

- **SNO** (1kton of heavy water) was designed to detect solar neutrinos through:
- **CC** interactions $V_e + d \rightarrow p + p + e^{-}$
 - V_e only (V_μ & V_τ don't have enough energy)
- **ES** interactions $V_x + e^- → V_x + e^$
 - all flavors
- **NC** interactions $V_x + d \rightarrow p + n + V_x$ all flavors

Proofs of neutrino oscillations - Solar

GRASPA'22 L. ZAMBELL

24

- **SNO** (1kton of heavy water) was designed to detect solar neutrinos through:
- **CC** interactions $V_e + d \rightarrow p + p + e^-$
 - V_e only (V_μ & V_τ don't have enough energy)
- **ES** interactions $V_x + e^- → V_x + e^$
 - all flavors
- \circ **NC** interactions $V_x + d \rightarrow p + n + V_x$ all flavors
- SNO measured the ratio : $\frac{\Phi_{CC}}{\Phi_{NC}} = 0.34 \pm 0.023 (\text{stat.})^{+0.029}_{-0.031}$
- And showed that the **total** flux of solar neutrino is **compatible** with the solar standard model

SNO proved that neutrino change flavors

Proofs of neutrino oscillations - Atmospheric

Super-Kamiokande measured the atmospheric V_e and V_μ energy as a function of $\cos\theta \leftrightarrow L$

GRASPA'22 L. ZAMBELL

25

Proofs of neutrino oscillations - Atmospheric

Proofs of neutrino oscillations - Atmospheric

1.6

8.0

0.6

0.4

0.2

Super-Kamiokande proved that V_{μ} disappear as a function of L/E (possibly into V_{τ})

GRASPA'22 L. Zambelli

Super-Kamiokande measured the atmospheric V_e and V_μ energy as a function of $cos\theta\leftrightarrow L$

Proofs of neutrino oscillations - Reactors

GRASPA'22 L. ZAMBELL

Reactor $\bar{\mathbf{V}}_{e}$ spectrum up to ~10 MeV -> Cannot measure appearance of new flavors

L. ZAMBELLI

(27)

Proofs of neutrino oscillations - Reactors

- First results -• Rejection of the V-decay and V-decoherence hypotheses • V-oscillation preferred

(28)

Proofs of neutrino oscillations

Kamland experiment in Japan measured the \overline{V}_{e} flux from 53 nuclear reactors (L_{mean} ~ 180 km)

Reactor \overline{V}_e spectrum up to ~10 MeV -> Cannot measure appearance of new flavors

- Final results -

• Very clear L/E pattern

 \circ Can see the disappearance dip, and re-appearance of \bar{v}_{e} !

KAMLAND proved that \overline{V}_e oscillates !

L. ZAMBELL

(30)

Oscillations with 3 flavors

The PMNS 3×3 unitary mixing matrix can be written as :

There are 3 mass splittings : Δ

But only two are relevant, sinc

In the 3 V-flavor case, the oscillation phenomena is described by:

- **o 3** mixing angles: θ_{12} , θ_{23} and θ_{13}
- o **2** mass splittings: $\Delta m_{21}^2 = \Delta m_{sol}^2$ and $\Delta m_{31}^2 = \Delta m_{atm}^2$
- \circ **1** CP violation phase δ

$$\begin{array}{ccc} \text{elerator} & \text{Solar} \\ s_{13}e^{-i\delta} \\ 0 \\ c_{13} \end{array} \right) \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \qquad \begin{array}{c} s_{ij} = \sin \theta \\ c_{ij} = \cos \theta \\ \Delta m_{ij}^2 = m_i^2 - \theta \end{pmatrix}$$

$$\Delta m_{21}^2, \ \Delta m_{31}^2, \ \Delta m_{32}^2$$

ce:
$$\Delta m_{12}^2 + \Delta m_{23}^2 + \Delta m_{31}^2 = 0$$

Oscillations with 3 flavors in vacuum

The oscillation probability is written as :

As we have 2 mass splittings, we have 2 oscillation frequencies interfering :

GRASPA'22 L. ZAMBELLI

(31)

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \nu_{\beta}(L) | \nu_{\alpha} \rangle|^{2} = \left| \sum_{j} U_{\alpha j}^{*} U_{\beta j} e^{-i \frac{m_{j}^{2} L}{2E}} \right|^{2}$$

Oscillations with 3 flavors in matter

The e-type neutrinos have an extra interaction potential with electrons through charged current

GRASPA'22 L. ZAMBELLI

(32)

Even earth crust has an impact on neutrino oscillation (denser matter -> stronger effect)

33

Oscillations parameters

Values of the oscillation parameters as of July 2022 :

- $\theta_{12} = 33.45^{+0.77}_{-0.75}$ $\theta_{23} = 42.1^{+1.1}_{-0.9}$
- $\theta_{13} = 8.62^{+0.12}_{-0.12}$
- $\Delta m_{\rm sol}^2 = \Delta m_{12}^2 = -7.42^{+0.21}_{-0.20} \times 10^{-5} \,\,\mathrm{eV}^2$
- $|\Delta m_{\rm atm}^2| = |\Delta m_{3\ell}^2| = 2.510^{+0.027}_{-0.027} \times 10^{-3} \,\,{\rm eV}^2$

- Oscillations in vacuum are not sensitive to the sign of Δm^2
- Matter effects helps to determine Δm^2 sign:
- m_2 > m_1 from solar V_e
- Not yet resolved for m₃

Oscillation Neutrino

GRASPA'22

L. ZAMBELL

34

Oscillations parameters

	Normal Ordering			
$\theta_{12} =$	$33.45_{-0.75}^{+0.77}$			
$\theta_{23} =$	$42.1_{-0.9}^{+1.1}$			
$\theta_{13} =$	$8.62^{+0.12}_{-0.12}$			
$\Delta m_{\rm sol}^2 = \Delta m_{12}^2 =$	$7.42^{+0.21}_{-0.20} \times 10^{-5} \text{ eV}^2$			
$\Delta m_{\rm atm}^2 = \Delta m_{3\ell}^2 =$	$+2.510^{+0.027}_{-0.027} \times 10^{-3} \text{ eV}^2$			
: $ u_e$:	$ u_{\mu}$: $ u_{\tau}$			
$m_3^2 + \uparrow$	$\int_{\sim 7.5 \times 10^{-5} \text{eV}^2}^{\text{solar}} m_2^2$			
Atmospheric $\sim 2.5 \times 10^{-3} \mathrm{eV}^2$	$\uparrow m_1^2$			
m^2	Atmospheric $\sim 2.5 \times 10^{-3} \mathrm{eV}^2$			
m_1^2 m_1^2 m_1^2 $solar$ $\sim 7.5 \times 10^{-5} eV^2$	$-m_{2}^{2}$			
\uparrow	?			
Normal	Inverted			
Ordering	Ordering			

 $33.45\substack{+0.78 \\ -0.75}$

- $49.0^{+0.9}_{-1.3}$
- $8.61_{-0.12}^{+0.14}$
- $7.42^{+0.21}_{-0.20} \times 10^{-5} \text{ eV}^2$
- $-2.490^{+0.026}_{-0.028} \times 10^{-3} \text{ eV}^2$

Three unknowns of neutrino oscillations :

- Mass Hierarchy : Normal or inverted ?
- θ_{23} octant : $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
- δ_{CP} : Do V behaves as \overline{V} ?

Principle for precision measurement

V source

<u>Requirements :</u>

- Powerful source
- Initial location known
- Initial flavor content known
- Initial energy spectrum known

GRASPA'22 L. ZAMBELL

Detector

<u>Requirements :</u>

- At L/E for oscillation
- Able to distinguish $e/\mu/\tau$
- Energy reconstruction
- Big and/or dense

L. ZAMBELL

(37)

Experiments Using Reactors

Continuous powerful emission of $\bar{\nu}_e$ through the fission of 235 U, 239 Pu and 239 Pu.

Energy spectrum from 2 to 8 MeV

- \circ Cannot tag new flavor appearance (\bar{v}_{μ} or $\bar{v}_{\tau})$
- Only the disappearance measurement is possible
- $\begin{array}{l} \textbf{L} \sim \textbf{1} \, \textbf{km} \text{ to be at atmospheric oscillation} \\ & \odot \text{ Considered to be in vacuum, the 2 flavor approximation} \\ & \text{ is valid. No sensitivity to } \delta_{\text{CP}} \text{ or MH} \end{array}$

L ~ 50 km to be at solar oscillation
 Study of the interference between the 2 oscillations gives sensitivity to MH [JUNO experiment]

L. ZAMBELL

(38)

Experiments Using Accelerators

Principle :

- Accelerated proton collides into a target, produces mostly π^{\pm} .
- Pions main decay channel (99%) : $\pi \rightarrow \mu + \nu_{\mu}$
- Focussing horns to select π^+ (V_{μ} flux) or π^- (\bar{V}_{μ} flux)
- A near detector to measure the flux *before* oscillations
- A far detector at the L/E to observe oscillations
 - **v** beamline parameters tuned for optimal E

L. ZAMBELL

(39)

Experiments Using Accelerators

Three Channels possible (same for $\bar{\mathbf{V}}_{\mu}$):

 $\circ \mathbf{V}_{\mu} \rightarrow \mathbf{V}_{\mu}$:

- No CP violation : $P(\nu_{\mu} \rightarrow \nu_{\mu}) \equiv P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$
- Negligible matter effects
- $\circ V_{\mu} \rightarrow V_{e}$: The Golden Channel
- Very sensitive to CP
- Very sensitive to MH with matter
- Very sensitive to θ_{23} octant

 $\circ V_{\mu} \rightarrow V_{\tau}$:

- Similar discovery potential as V_e appearance but:

 $m_{\tau} = 1.7$ GeV, $c\tau_{\tau} = 87 \mu m$ and τ^{\pm} have hundreds of complicated decay channels

Experiments Using Accelerators

GRASPA'22 L. ZAMBELLI

(40)

0.07 0.06 $P(v_{\mu} \rightarrow v_{e})$

L. ZAMBELLI

(41)

Experiments Using Accelerators

Experiments Using Accelerators

GRASPA'22 L. Zambelli

Experiments Using Accelerators

GRASPA'22 L. Zambelli

Current V accelerator experiments

T2K in Japan

Since 2010, L = 295 km, E = 0.6 GeV

Equal V and \overline{V} runs

Near detector is a gaseous TPC Far detector is Super-Kamiokande

ND280 (off-axis)

GRASPA'22 L. ZAMBELL

NOvA in the US

Since 2013, L = 810 km, E = 2 GeVEqual V and \overline{V} runs Near and Far detectors are plastic scintillators

Current V accelerator experiments

GRASPA'22 L. ZAMBELLI

L. ZAMBELL

(46)

Current V accelerator experiments

T2K in Japan

 Slight preference for Normal Hierarchy $\circ \delta_{CP} = (0, \pi)$ excluded at 95% C.L. for both MH •Large range around $\delta_{CP} = +\pi/2$ excluded at 3σ

NOvA in the US

 \circ Prefers Normal Hierarchy at 1.0σ • Exclude $\delta_{CP} = \pi/2 + IH$ at > 3σ \circ Exclude $\delta_{CP} = 3\pi/2 + NH$ at 2σ

T2HK in Japan

- L=300 km, E ~ 0.6 GeV
- 260 kt water Cherenkov detector
- Proven and scalable technology
- Excellent e-μ ring separation
- Little R&D foreseen
- Only low energy beam possible (< 1 GeV)

GRASPA'22 L. ZAMBELL

DUNE in the US

- L=1300 km, E ~ 1-3 GeV
- 40 kt liquid argon TPC detector
- 3D imaging with high granularity for precise tracking
- Low energy threshold (~10s MeV)
- Important R&D efforts ongoing : Scalability, Engineering

Both planning of starting data taking in ~2026

T2HK in Japan

Notre-Dame will fit inside Hyper-Kamiokande!

GRASPA'22 L. ZAMBELL

DUNE in the US

Inside DUNE prototype ($6 \times 6 \times 6 \text{ m}^3$) at CERN -> Future : 4 modules of 60×12×12 m³ each

T2HK in Japan

GRASPA'22 L. ZAMBELL

DUNE in the US

- \circ **DUNE** will resolve the MH at 5 σ in ~1.5y
 - [3y to exclude the wrong MH for any δ_{CP} value]
- **T2HK** itself do not have a lot of sensitivity
 - [can reach 5σ in 10y with beam + atmospheric V]

In 10 years of operation, if the MH is known: \circ **DUNE** can exclude $\delta_{CP} = (0, \pi)$ for 50% of δ_{CP} values \circ **T2HK** can reach 5 σ for 60% of δ_{CP} values

GRASPA'22 L. ZAMBELL

(50)

Neutrinos **oscillates** :

- \bigcirc V_e, V_μ, V_τ ≠ V₁, V₂, V₃
- Two oscillation frequencies: fast (solar) and slow (atmospheric) • Neutrinos **mix** a lot more than quarks ○ In the next decade(s), all parameters measured: - matter/anti-matter asymmetry in the leptonic sector - neutrino mass ordering

• Neutrinos are **massive** - and it raises many other questions !

- What mass ?
- Mass mechanism ?
- Could there be other neutrinos ?

GRASPA'22 L. ZAMBELL

GRASPA'22 L. ZAMBELL

Residuals (σ)

L. ZAMBELL

54

How neutrinos get massive ? ββ0v experiments (SuperNEMO, CUORE, SNO+) • The **Dirac** way Through Higgs coupling Need a sterile right handed V $\mathcal{L}_{mass}^D = -m_D(\bar{\nu}_R \nu_L + \bar{\nu}_L \nu_R)$ $m_D = \frac{v}{\sqrt{2}} Y_v \leftarrow \sim 10^{-12} \text{ (why?)}$ [Double beta decay] $\circ \beta \beta 0 v$ is **forbidden** in SM Double beta decay which emits anti-neutrinos m $v_e = \overline{v}_e$ Neutrinoless double beta decay

o The **Majorana** way

No distinction between V and \overline{V} $\nu_R = C\bar{\nu}_L^T = \nu_L^C$ $m = \frac{m_D^2}{m}$ ← Dirac term Mass given by seesaw mechanism Need massive neutrinos $m_R \leftarrow \text{Very big}$

→ Only one way to prove that neutrino are Majorana particles :

- Double β decay with **no** neutrino emission
- ο ββ2V is very rare (half life ~ 10^{18} 10^{24} y)

→lepton number violated by 2 units

L. ZAMBELL

(55)

Only 3 Neutrinos ? STEREO, SOLID, PROSPECT,...

- Sterile because this neutrino cannot interact with weak force: it would be invisible

- But all 4 neutrinos could oscillate within each others
- → New mass splitting and new mixing angle

Best fit parameters of reactor anomaly:

 $\Delta m^2 \sim 2 eV^2$ $sin^{2}(2\theta) \sim 0.15$ L_{osc} ~ few m

A revised reactor \overline{V} e flux analysis showed that all past V experiments had a ~6% **deficit** at small distances (3σ)

-> Problem with reactor flux ? -> Existence of a sterile neutrinos ?

Latest results from STEREO

_		_		_	-	
_			_	-		_
			_	-		
-	_		_	-		
				_		
_			_	_		

56

Neutrino Astronomy: ICECUBE, KM3NET

On February 23rd 1987, a supernova exploded in the large magellan cloud (170 000 l.y.)

3h before the light signal, three neutrino detectors observed a large number of events in a very short time (**24 events in 13s**)

neutrinos multi-messenger

northy CN overlacion

- o Unlike protons & gammas, neutrinos **points to their** sources
- o Can probe the inside of the structure
- **No GZK threshold** : can probe far away objects

- o 99% of the SN energy is released as
- o 1st case of neutrino astronomy and
- o all v experiments waiting for next

Neutrino Astronomy: ICECUBE, KM3NET

On September 22nd 2017 : **Simultaneous** light & neutrino detection from the TXS 0506+056 blazar (3 σ , $E_v = 290$ TeV) (blazar = Active Galactic Nucleus with one jet pointing to earth)

o 1st case of planned **multi-messenger** astronomy

o Confirmed that blazar emits neutrinos

GRASPA'22 L. ZAMBELL

- o Unlike protons & gammas, neutrinos **points to their** sources
- o Can probe the inside of the structure
- **No GZK threshold** : can probe far away objects

