Markov Chain Monte Carlo et application au rayonnement cosmique

Laurent DEROME

Université Joseph Fourier - LPSC Grenoble

21 mai 2010

Introduction

Quelques remarques préliminaires

- Pas un expert, plus le point de vue d'un utilisateur...
- Un grand nombre de slides de cette présentation sont empruntés à Antje Putze.
- Voir les références à la fin de la présentation.

Parti pris de l'introduction

- MCMC : "simple" générateur de nombres pseudo-aléatoires multidimensionnel.
- A quoi ça peut servir : Méthode MC, Marginalisation d'une PDF.
- A quoi ça sert le plus : Analyse Bayésienne Marginalisation de la PDF $P(\theta \mid \text{data})$

Plan

MCMC : Principes

- Générateurs
- Méthode Monte-Carlo
- MCMC : Analyse bayésienne
- MCMC : Exemple simple
- 2 MCMC : Application
 - Le rayonnement cosmique
 - USINE & MCMC
 - Analyse des chaines
 - Fonction de proposition
 - Résultats
 - Un exemple : le modèle du Leaky-Box
 - Le modèle de diffusion à 1D

- Sélection de Modèle
 - Introduction
 - Evidence
 - Imporatant Sampling
 - Exemple
- Conclusion
- Références

Générateur de VA à 1 dimension

La problématique

Construire un générateur d'une variable aléatoire dont la PDF est donnée par f(x) à partir d'un générateur uniforme : ingrédient de base des méthodes Monte-Carlo

Deux techniques classiques

 Méthode de la réjection : génération uniforme de points (x, y) et réjection des points y > f(x)

• Méthode de la transformation inverse : $F(x) = \int_{-\infty}^{x} f(x) dx$ $x = F^{-1}(u)$ où u = unif(0, 1)

Générateur de VA à *m* dimensions

La problématique

construire un générateur de *m* variables aléatoires dont la PDF jointe est donnée par $f(\vec{x})$ où $\vec{x} = (x_1, \dots, x_m)$ à partir d'un générateur uniforme.

On peut toujours utiliser les deux techniques classiques

- Méthode de la réjection \Rightarrow Acceptation très faible : problème d'efficacité dés que *m* est grand ($\sim 1/\alpha^m$)
- Méthode de la transformation il faut calculer (et stoker en mémoire) :
 - $f(x_1)$ (et stocker $F(x_1)$) pour générer x_1
 - $f(x_2|x_1)$ (et stocker $F(x_2|x_1)$ pour chaque x_1) pour générer x_2
 - $f(x_i | x_{i-1} \dots x_1)$ (et stocker $F((x_i | x_{i-1} \dots x_1)$ pour chaque $x_{i-1} \dots x_1)$ pour générer x_i .

problème de calcul, mémoire dès que *m* est grand ($\sim \beta^m$)

Générateurs

Générateur de VA à *m* dimensions · MCMC

L. DEROME (LPSC)

Méthode Metropolis

En 2 étapes : proposition et acceptation

On définit

 $f(\vec{x})$: fonction cible, c'est la distribution à échantillonner.

 $q(\vec{x}|\vec{x}^{(t)})$: loi de proposition, prob. avec laquelle le point \vec{x} est proposé si on est en $\vec{x}^{(t)}$ (loi simple à échantillonner). Dans la méthode de Métropolis, on doit choisir q tel que :

$$q(ec{x}|ec{y}) = q(ec{y}|ec{x})$$

 $a(\vec{x}, \vec{x}^{(t)})$: loi d'acceptation, prob. d'accepter le point proposé \vec{x} .

$$a(\vec{x}, \vec{x}^{(t)}) = \begin{cases} 1 & \text{si} & f(\vec{x}) > f(\vec{x}^{(t)}) \\ \frac{f(\vec{x})}{f(\vec{x}^{(t)})} & \text{sinon} \end{cases} = \min\left(1, \frac{f(\vec{x})}{f(\vec{x}^{(t)})}\right)$$

Important

la construction de la chaîne ne dépend pas de la normalisation de $f(\vec{x})$

L. DEROME (LPSC)

Méthode Metropolis

En 2 étapes : proposition et acceptation

Méthode Metropolis-Hasting

En 2 étapes : proposition et acceptation

On définit

- $f(\vec{x})$: fonction cible, c'est la distribution à échantillonner.
- $q(\vec{x}|\vec{x}^{(t)})$: loi de proposition, prob. avec laquelle le point \vec{x} est proposé si on est en $\vec{x}^{(t)}$ (loi simple à échantillonner). lci on peut choisir q tel que :

$$q(ec{x}|ec{y})
eq q(ec{y}|ec{x})$$

 $a(\vec{x}, \vec{x}^{(t)})$: loi d'acceptation, prob. d'accepter le point proposé \vec{x} .

$$a(\vec{x}, \vec{x}^{(t)}) = \min\left(1, \frac{f(\vec{x})}{f(\vec{x}^{(t)})} \frac{q(\vec{x}^{(t)}|\vec{x})}{q(\vec{x}|\vec{x}^{(t)})}\right),$$

(D) (D) (E

Important

la construction de la chaîne ne dépend pas de la normalisation de $f(\vec{x})$

L. DEROME (LPSC)

Convergence de la chaine

La convergence de la marche aléatoire vers la loi de distribution $f(\vec{x})$ est assurée par la condition (detailed balance) :

 $P_e(\vec{y}|\vec{x})f(\vec{x}) = P_e(\vec{x}|\vec{y})f(\vec{y})$

où $P_e(\vec{y}|\vec{x})$ est la prob. de la chaine d'aller en \vec{y} depuis \vec{x} . Ici on a donc : $P(\vec{y}|\vec{x}) = q(\vec{y}|\vec{x})a(\vec{y},\vec{x})$

Cette condition est assurée par le choix de la forme de $a(\vec{y}|\vec{x}) = \min\left(1, \frac{f(\vec{y})}{f(\vec{x})}\right)$ (Metropolis) quelque soit le choix de q (symétrique).

Algorithme

Générateurs

Finalement voila ce qu'un MCMC produit...

- Convergence vers $f(\vec{x})$ mais on doit écarter les premières valeurs prises par la chaîne : Burn-in
- Corrélation entre les valeurs de la chaîne, il faudra garder 1 valeur sur l_c où l_c est la longueur de corrélation pour avoir des échantillons
- Le choix de la loi de proposition est un choix critique :
 - Méthode optimale $(n_c \text{ petit}) : q(\vec{x}, \vec{x}_t) = f(\vec{x}).$
 - $q(\vec{x}, \vec{x}_t)$ trop étalée \Rightarrow acceptance très faible $\Rightarrow l_c$ grand.
 - $q(\vec{x}, \vec{x}_t)$ trop étroite \Rightarrow corrélation forte $\Rightarrow l_c$ grand.

Pourquoi faire ? Monte-Carlo

Finalement, à l'aide d'un MCMC on va produire une séquence (indépendante)

$$\vec{x}^1, \vec{x}^2, \ldots$$

distribuée selon la loi cible $f(\vec{x})$. Marginalisation Estimation de la PDF 1D (ou 2D) :

$$f_p(x_p) = \int_1 \ldots \int_{p-1} \int_{p+1} \ldots \int_m f(\vec{x}) dx_1 \ldots dx_{p-1} dx_{p+1} \ldots dx_m$$

 $\begin{array}{l} \Rightarrow \text{ histogramme des } x_p^1, x_p^2, \dots \\ \text{Estimation de la valeur de } g(\vec{x}) : \\ \Rightarrow \text{ histogramme des } g(x_p^1), g(x_p^2), \dots \end{array}$

Le cas classique d'utilisation du MCMC : Analyse bayésienne

Toute l'information est contenue dans $P(\theta | \text{données})$, PDF à *m* dimensions des paramètres du modèle. Mais en pratique pour exploiter l'information il faut construire les PDF 1D, 2D : Intégrale multidimensionnelle

 $\implies \mbox{Méthodes MCMC (fonction cible : $P(\theta|données)$) vont permettre d'évaluer}$$ les PDF 1D,2D, ... associées aux paramètres compte-tenu des données expérimentales.$

21 mai 2010

14 / 58

Un exemple simple

Ajustement d'une fonction du second ordre

On dispose de données expérimentales (x_i, y_i) et on a le modèle :

 $y = a + bx + cx^2$

où $\theta = \{a, b, c\}$ sont les paramètres du modèle. ici on a pris $\theta_{\text{vrai}} = \{a, b, c\}_{\text{vrai}} = \{1, 1.5, .1\}$

▲ 御 ♪ ▲ 目

Objectif

utiliser les données expérimentales pour reconstruire les PDF associées aux paramètres (a, b, c).

L. DEROME (LPSC)

Un exemple simple...

Ajustement d'une fonction du second ordre

Pour cela on écrit :

 $P(a, b, c | \text{données}) \propto P(\text{données} | a, b, c) \cdot P(a, b, c)$

où $P(\text{données}|a, b, c) = \mathcal{L}(a, b, c)$ est la fonction de vraisemblance. on a :

$$\mathcal{L}(a, b, c) = \prod_{i} \left\{ \frac{1}{\sqrt{2\pi\sigma}} \exp{-\frac{1}{2} \frac{(y_{i} - a + bx_{i} + cx_{i}^{2})^{2}}{\sigma^{2}}} \right\}$$

$$\propto \exp{-\frac{1}{2} \chi^{2}(a, b, c)} \quad \left(\chi^{2}(a, b, c) = \sum_{i} \frac{(y_{i} - a + bx_{i} + cx_{i}^{2})^{2}}{\sigma^{2}} \right)$$

et on choisit P(a, b, c) = cst.

Algorithme

Un exemple simple

Ajustement d'une fonction du second ordre

Et on obtient PDF 1D des paramètres {a, b, c} ({a, b, c}_{vrai} = {1, 1.5, .1}) : valeur moyenne, erreur, intervalle de confiance PDF 2D : corrélations, intervalle de confiance.

L. DEROME (LPSC)

Un exemple simple

Ajustement d'une fonction du second ordre

Et on peut aussi construire

. . .

- PDF d'observables construites à partir de a, b, c, par exemple f(x_{new}).
- Enveloppe à 68 % de niveau de confiance.

Reste à comprendre

- Construction de la chaine : comment choisir la fonction de proposition ?
- Contrôle de la convergence de la chaine.
- Analyse de la chaine : Burn-in et longueur de corrélation

Et surtout

Les performances... problème pratique clé (en général dominé par le temps de calcul d'un modèle)

 \Rightarrow Etude sur un cas physique : propagation du rayonnement cosmique dans la Galaxie

Le rayonnement cosmique

Le spectre énergétique

Le spectre énergétique

- s'étend sur plus de 12 ordres de grandeurs en énergie et 32 ordres de grandeurs en intensité;
- peut être décrit par une loi de puissance :

$$rac{\mathrm{d}N(E)}{\mathrm{d}E}\propto E^{-\gamma};$$

possède des « anomalies » :
le genou à ~ 4,5 × 10¹⁵ eV;
la cheville à ~ 4 × 10¹⁸ eV;
une coupure à ~ 4 × 10¹⁹ eV.

[Swordy, Space Science Reviews 99 (2001), 85]

Le rayonnement cosmique

Les abondances

[Hrandel, Advances in Space Research 41 (2008), 442]

abondances similaires à celles de notre système solaire, mais surabondance pour les noyaux Z = 3 - 5, 20 - 25

Le périple d'un rayon cosmique galactique

Cassiopée A (Chandra, rayons X), rémanent d'une supernova le plus jeune de la Voie Lactée [NASA/CXC/MIT/UMass Amherst/M.D.Stage et al.]

Sources - Accélération étoiles, environnement de supernova ?

L. DEROME (LPSC)

Le périple d'un rayon cosmique galactique

Sources - Accélération

étoiles, environnement de supernova ?

Propagation dans le milieu interstellaire

diffusion sur les inhomogénéités du champ magnétique galactique

Le périple d'un rayon cosmique galactique

L'héliosphére (vue artistique) [NASA]

Sources - Accélération

étoiles, environnement de supernova ?

Propagation dans le milieu interstellaire

diffusion sur les inhomogénéités du champ magnétique galactique

Système solaire - Détection modulation solaire, coupure géomagnétique

L. DEROME (LPSC)

21 mai 2010 23 / 58

Quelques questions ouvertes

- Quelles et où sont les sources?
- Existe-t-il des sources exotiques?
- Comment le rayonnement cosmique est-il accéléré?
- Comment est-il propagé?
- Quelle est sa composition à ultra-haute énergie?
- Quel processus provoque le genou et/ou la cheville?
- Existe-t-il une limite (GZK ou autre)?

Ο...

Quelques questions ouvertes

- Quelles et où sont les sources?
- Existe-t-il des sources exotiques?
- Comment le rayonnement cosmique est-il accéléré?
- Comment est-il propagé?
- Quelle est sa composition à ultra-haute énergie?
- Quel processus provoque le genou et/ou la cheville?
- Existe-t-il une limite (GZK ou autre)?

Ο...

Pourquoi étudier la propagation?

Astrophysique du rayonnement cosmique

- L'étude de la propagation du rayonnement cosmique permet de
 - déterminer les mécanismes de propagation ;
 - contraindre les processus d'accélération ;
 - étudier l'émission diffuse des rayons $\gamma.$

La matiére noire

- annihilation de WIMP χ $\chi + \bar{\chi} \rightarrow I\bar{I}, 2\gamma, q\bar{q}, \ldots$
- recherche d'excès dans les spectres de \bar{p} , e^+ , \bar{d} , γ , ...

le « fond » doit être connu

[T. Delahaye et al., A&A 501 (2009), 821]

L. DEROME (LPSC)

мсмс

21 mai 2010 25 / 58

Questions sur la propagation

4631 (610 MHz) [Ekers & Sancisi, A&A 54 (1977), 973]

Modèle galactique avec un halo

halo radio dû au rayonnement cosmique autour du disque galactique observé

$\implies \mathsf{halo}\ \mathsf{galactique}$

Les mécanismes

- la diffusion : K(E)
 ⇒ le champ magnétique;
 Kolmogorov : K ∝ E^{1/3}?
- la convection : V_c
 ⇒ le vent galactique;
- la réaccélération : V_a ⇒ les ondes magnétohydrodynamiques.

Les observables

La détection directe

- mesure des flux élémentaires et isotopiques
- en dehors de l'atmosphère terrestre (satellites, ballons);

L. DEROME (LPSC)

мсмс

USINE

Propagation du rayonnement cosmique

Code de propagation USINE développé par D. Maurin

• Résolution semi-analytique de l'équation de diffusion

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (D_{xx} \nabla \psi - V \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left[\dot{p} \psi - \frac{p}{3} \left(\nabla \cdot V \right) \psi \right] - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

pour chaque noyau.

- Géométrie à deux zones cylindriques
- Interaction nucléaire perte d'énergie

• . . .

- Produit en sortie tous les flux des RC propagés pour les paramètres données en input.
- Interface avec l'ensemble des mesures du rayonnement cosmique.
- Permet de calculer le χ^2 et \mathcal{L} à partir des observables sélectionnées.

USINE

Implémentation du MCMC dans USINE

L. DEROME (LPSC)

21 mai 2010 29 / 58

L'analyse des chaines

Burn-In

On calcule la médiane $f_{1/2}$ de la distribution de la fonction objectif. La longueur de Burn-in correspond au premier échantillon θ_b pour lequel $f(\theta_b) > f_{1/2}$

L'analyse des chaines

Corrélation

On calcule la longueur d'auto-corrélation pour chaque paramètre $\theta^{(\alpha)}$ $(\alpha = 1, ..., m)$:

$$c_{j}^{(\alpha)} = \frac{\operatorname{cov}\left[\theta_{i}^{(\alpha)}, \theta_{j+i}^{(\alpha)}\right]}{V\left[\theta_{i}^{(\alpha)}\right]}.$$

avec la méthode FFT. La longueur de corrélation $\mathit{I}^{(\alpha)}:j$ le plus petit pour lequel $c_j^{(\alpha)}<1/2$ et

$$I \equiv \max_{\alpha=1,\ldots,m} I^{(\alpha)}.$$

1/2

0

Fonction de proposition

Choix très sensible (surtout pour *m* grand)

Dans notre cas, on fait 3 MCMC successifs en utilisant le résultat de chaque MCMC pour "construire" une fonction de proposition plus performante.

Etape 1

On a juste une estimation de la précision attendue sur les paramètres, on utilise

$$q\left(\boldsymbol{ heta}_{\mathrm{essai}}|\boldsymbol{ heta}_{i}
ight) \propto \prod_{lpha=1,\ldots,m} \exp\left(-rac{1}{2}rac{\left(heta_{\mathrm{essai}}^{\left(lpha
ight)}- heta_{i}^{\left(lpha
ight)}
ight)^{2}}{\sigma_{lpha}^{2}}
ight)$$

 \Rightarrow *m* gaussiennes indépendantes et centrées en θ_i , $\sigma_{\alpha} \approx 2.3 \sigma_{\alpha}^{\text{est}}$

Fonction de proposition

Etape 2

On utilise le MCMC précédent pour estimer la matrice de covariance ${\it V}$ et on définit

$$q_{COV}\left(oldsymbol{ heta}_{ ext{essai}} | oldsymbol{ heta}_i
ight) \propto \exp\left(-rac{1}{2}\left(oldsymbol{ heta}_{ ext{essai}} - oldsymbol{ heta}_i
ight)^{\mathcal{T}} V^{-1}\left(oldsymbol{ heta}_{ ext{essai}} - oldsymbol{ heta}_i
ight)
ight).$$

 \Rightarrow Permet de proposer des points dans les directions privilégiées

Fonction de proposition

Etape 3

On utilise le MCMC précédent pour construire une fonction de proposition constantes par morceaux sur une partition de l'espace des paramètres construits par division successives de l'espace (Binary Space Partitioning) :

- Une cellule est divisée en deux tant que $N_{
 m cell} > N_{
 m th}~(N_{
 m th} \sim 10).$
- la valeur prise par $q_{BSP}(\theta_{essai})$ dans chaque cellule est

$$rac{N_{
m cell}}{N_{
m tot}}rac{1}{V_{
m cell}}$$

• Fonction $q_{BSP}(\theta_{essai})$: approximation de la fonction cible très simple à échantillonner (uniforme par morceau).

Un exemple Le modéle du Leaky-Box

$$\lambda_{\rm esc}(R) = \lambda_0 \beta \begin{cases} R_0^{-\delta} & \text{pour } R < R_0, \\ R^{-\delta} & \text{sinon} \end{cases} \quad \text{avec} \quad R = \frac{pc}{Ze}$$

3 paramètres libres : λ_0 en g cm⁻², R_0 en GV, δ

MCMC : Application

Résultats

Un exemple Le modèle du Leaky-Box

L. DEROME (LPSC)

21 mai 2010 36 / 58

MCMC : Application

Résultats

Un exemple Le modèle du Leaky-Box

L. DEROME (LPSC)

мсмс

21 mai 2010 37 / 58

Un exemple Le modèle du Leaky-Box

L. DEROME (LPSC)

Un exemple

Le modéle du Leaky-Box

L. DEROME (LPSC)

21 mai 2010 39 / 58

Le modèle de diffusion

Galaxie est partagée en deux zones : Ie disque mince de taille h; 2 le halo diffusif de taille $L \gg h$.

> $K(R) = K_0 \beta R^{\delta}$ $n_d = n$, $n_h = 0$

5 paramètres libres : K_0 en kpc²/Myr, δ , V_c en km/s, L en kpc, V_a en km/s.

Raffinement

Changement de variable

La performance (longueur de corrélation) dépend beaucoup des corrélations et de la non-gaussianité des PDF : construction de combinaisons des paramètres plus performantes.

L. DEROME (LPSC)

Le modèle de diffusion à 1D : les noyaux stables

[Putze et al., A&A 2010]

• Configuration avec convection et réaccélération préférée :

$$\begin{split} L &= 4 \text{ kpc fixe} \\ V_c &= 18, 8^{+0,3}_{-0,3} \text{ km/s} \\ \delta &= 0, 86^{+0,04}_{-0,04} \\ K_0 &= 0, 0046^{+0,0008}_{-0,0006} \text{ kpc}^2/\text{Myr} \\ V_a &= 38^{+2}_{-2} \text{ km/s} \end{split}$$

• L'indice spectral de Kolmogorov $(\delta = 1/3)$ défavorisé par les données utilisées.

L. DEROME (LPSC)

21 mai 2010 42 / 58

Le modèle de diffusion à 1D : les noyaux radioactifs

Dégénérescence entre K_0 et L pour les rapports primaire sur secondaire stables :

$$\lambda_{
m esc} = nmvhrac{L}{K(E)}$$

⇒ Secondaires radioactifs permettent de lever cette dégénérescence

Résultats avec les données ¹⁰Be/⁹Be

Le modèle de diffusion modifié à 1D

Modélisation : trou dans le disque

$$\frac{N_{r_h}}{N_{r_h=0}} = \exp\left(\frac{-r_h}{l_{\rm rad}}\right),$$

où $I_{\rm rad}$ est la distance typique parcourue avant la décroissance du radioactif [Donato et al., A&A 381 (2002), 539]

(D) (D) (

Paramètre supplémentaire : le rayon de la bulle locale r_h en pc

21 mai 2010 44 / 58

Le modèle de diffusion modifié à 1D : les noyaux radioactifs

Résultats avec les données ¹⁰Be/⁹Be

 $L = 8^{+8}_{-7} \text{ kpc}$ $r_h = 120^{+20}_{-20} \text{ pc}$

Des données plus précises permettront de mieux contraindre L et r_h !

L. DEROME (LPSC)

21 mai 2010 45 / 58

Le modèle de diffusion : Enveloppes

Enveloppes construites avec 68 % des modèles les plus probables

Conclusion : application du MCMC au RC

- Extraction des densités de probabilité *a posteriori* des paramètres de propagation du modèle de diffusion à une dimension :
 - modèle avec réaccélération et convection préféré par les données utilisées ;
 - indice spectral de Kolmogorov défavorisé par les données utilisées;
- Etude des paramètres de géométrie de la Galaxie :
 - estimation de la taille du halo L et le rayon r_h de la bulle locale;
 - prise en compte de la bulle locale baisse la taille du halo L;
 - valeurs trouvées compatibles avec les observations.

Et après Sélection de Modèle

Problème classique

- Plusieurs modèles concurrents, lequel choisir?
- Doit-on ajouter un nouveau paramètre libre?

Etude dans le cadre d'une analyse bayésienne

On a toujours

$$P(\theta|D,H) = rac{P(D| heta,H)P(heta|H)}{P(D|H)},$$

lci $D \equiv$ data et $H \equiv$ hypothèse/modèle P(D|H) est l'évidence du modèle H, la quantité clé pour la sélection d'un modèle. On a

$$E = P(D|H) = \int d\theta P(D|\theta, H) P(\theta|H)$$

L. DEROME (LPSC)

ペロト (日本) (日本)

Evidence

- Alors qu'un modèle plus complexe réalisera toujours un meilleur ajustement, l'évidence, étant proportionnelle au volume occupé par le posterior relativement au prior implémente naturellement le "rasoir" d'Occam.
- Il favorise les modèles plus simples et permet de quantifier la tension entre la simplicité d'un modèle et sa capacité à reproduire les données.
- Jeffreys (1961) a fournit un critère pour choisir entre deux modèles :
 - $1 < \Delta \ln E < 2.5$ est substantiel,
 - $2.5 < \Delta \ln E < 5$ est fort,
 - $\Delta \ln E > 5$ est décisif.

Evidence Calcul de l'évidence

Méthode de calcul

- Nested Sampling : ressemble au MCMC mais échantillonne l'ensemble de l'espace des paramètres de façon plus efficace pour l'intégration.
- Important Sampling

Evidence

Evidence Important Sampling

(Ici P(x) est le prior et $\pi(x) = L(x)P(x)$, on a donc :)

$$E = \int L(x)P(x) dx = \int \pi(x) dx,$$

Pour une PDF q dont le support inclus celui de π , on peut écrire :

$$E = \int \pi(x) \, \mathrm{d}x = \int \frac{\pi(x)}{q(x)} \, q(x) \, \mathrm{d}x.$$

La méthode produit une estimation MC de E à partir d'une séquence x_1, \ldots, x_N échantillonnée à partir de l' importance function q

$$E pprox rac{1}{N} \sum_{n=1}^{N} w_n; \quad w_n = rac{\pi(x_n)}{q(x_n)},$$

où w_n sont les poids.

Evidence Important Sampling

Poids normalisés :

$$\bar{w}_n = \frac{w_n}{\sum_{m=1}^N w_m}$$

Qualité de l'estimation de E dépend du choix de la fonction q. La variance est donnée par

 $\sigma_E^2 = \frac{E^2}{N} d^2(\bar{\pi} || q),$

où

$$d^2(\bar{\pi} \| q) = \int \frac{\bar{\pi}^2(x)}{q(x)} \,\mathrm{d}x - 1.$$

d'autant plus performant que q(x) est proche de $\bar{\pi}(x)$.

Exemple

Exemple

Implémentation

Dans notre cas : on utilise $q(x) = q_{BSP}(x)$ et la séquence généré $x_1, \ldots x_N$ dans l'étape 3.

Exemple

On va tester différents processus et modèles : un modèle linéaire, un modèle du deuxième ordre et un modèle avec un changement de pente :

un modèle linéaire

$$f_L = a_1 x + b$$

un modèle du deuxième ordre

$$f_S = a_1 x + b + c x^2$$

• un modèle avec un changement de pente

$$f_{\mathcal{K}}(x) = \left\{ \begin{array}{rl} a_1x + b & \mathrm{pour} & x \leq x_{\mathcal{K}} \\ a_2(x - x_{\mathcal{K}}) + a_1x_{\mathcal{K}} + b & \mathrm{pour} & x > x_{\mathcal{K}} \end{array} \right.$$

Sélection de Modèle

Exemple

Exemple

Exemple

	Model					
	Kink		Linear		Second	
Process	In E	$\chi^2/n.d.f.$	In E	$\chi^2/n.d.f.$	In E	$\chi^2/n.d.f.$
Kink	-13.5643	10.1734/6	-20.6683	31.855/8	-14.7266	15.9965/7
Linear	-9.17013	4.09954/6	-8.24472	6.65462/8	-9.54192	5.64227/7
Second	-14.8201	12.9957/6	-22.5555	35.4976/8	-15.425	17.4064/7

Evidence vs. χ^2

Ici les avantages de l'évidence sont :

- On dispose d'un critère simple pour sélectionner le modèle
- Peut-être utilisée pour une fonction de vraisemblance quelconque (et pas seulement de la forme ln $L = -\frac{1}{2}\chi^2$) : petits nombres (poissonienne), barre d'erreurs asymétriques, bin d'énergie très larges, ...
- Prise en compte du Prior, donc plus appropriée à l'approche bayésienne.

<'□ > < 同 > < Ξ

Conclusion

- MCMC : générateur de séquence de variable aléatoire.
- Permet d'estimer les PDF marginalisée des paramètres.
- Particulièrement utilisé dans le cadre de l'analyse bayésienne
- Construction de la chaine en théorie très simple
- Analyse de la chaine : Burn-in & corrélation
- Performances : question cruciale.
 - En pratique très sensible au choix de la fonction de proposition.
 - Ici : 3 étapes successives.
 - Existe aussi : algorithme avec auto-adaptation de la fonction de proposition.

Références

MCMC & Application au RC

- R. M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.
- D. J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University Press, October 2003.
- "Phénoménologie et détection du rayonnement cosmique nucléaire", A. Putze, Thèse de l'UJF (2009)
- "A Markov Chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays - I. Method and results for the Leaky-Box model", Putze A., Derome L., Maurin D., . Perotto L., Taillet R., Astronomy & Astrophysics 497 (2009) 991-1007.
- "A Markov Chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays. II. Results for the diffusion model combining B/C and radioactive nuclei", Putze A., Derome L., Maurin D., accepted for publication in Astronomy & Astrophysics (2010).

Références

Model Selection, Evidence, Nested Sampling, Important Sampling

- "MULTINEST : an efficient and robust Bayesian inference tool for cosmology and particle physics" - F. Feroz, M.P. Hobson and M. Bridges - Mon. Not. R. Astron. Soc. 000, 114 (2008) – astro-ph :0809.3437
- "Bayesian Evidence from Nested Sampling", P. Mukherjee, D. Parkinson and A. R. Liddle astro-ph :0508461
- "Bayesian model comparison in cosmology with Population Monte Carlo", Martin Kilbinger et al. – astro-ph :0912.1614

