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Predictable

The result of simple classical physics processes is exactly
predictable

(one cause leads to one
definite unique result,
determinism)

Examples:

pendulum, planets,
billard, electromagnetism...

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETAKIT
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Unpredictable

Purely random processes are not predictable at all
(even if the initial conditions are completely known!)

Examples:
Lottery

(Too many tiny influences and
branchings, deterministic chaos)

radioactive decay
(quantum mechanics) e &

electronic noise e —

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETAKIT



Quantum Mechanics:

In every collision
something else
happens!

Experiments:
Observe mean

values, distributions,

correlations,

determine parameters
(mean lifetime, spin,
parity etc) from that.

Michael Feindt
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Run 13816 Event 9618 16 Jun 2000 05:34:19

OPAL experiment at LEP

Centre-of-Mass Energy 205 GeV

Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Probability

Many systems in nature and life:
Mixture of predictable and unpredictable
(quasi-) random or chaotic components.

- Probability statements, statistics.

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETAKIT
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NeuroBayes core technology:

Extraction of a predictable component from
empirical data (or Monte Carlo simulations)

Statistically relevant predictions for future events

individual event
mean event

Individualisisation of
probability statements:

conditional probabilities: f(t|x),
dependent on individual event with properties x
instead of general (a priori) probability f(t)

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETAKIT
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Bayes' Theorem (1)

Conditional Probabilities:

pBla) = L0 paB) = AP
P(A) P(B)

Because of P(A N B) — P(B N A) itfollows that

P(A|B) — P(B|A) P(A) Bayes'
P(B) Theorem

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETAKIT
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Bayes' Theorem (2)

Extremely important due to the interpretation A=theory B=data

P(datal|theory) P(theory)

P(theory|data) = P(data)

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Classical statistics is just a special case of Bayesian statistics:

Maximisation of likelihood instead
of a posteriori probability means:

Implicit assumption that prior
P(data|theory) P(theory) probability is flatly distributed,
P(data) i.e. each value has same probability.

P(theory|data) =

Sounds reasonable, but is in general wrong!
Does not mean that one knows nothing!

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Cut in a 1-dimensional real

test-statistic which is correlated & 2 | | | |
to the probability of hypothesis ’_
HO: i
Accept hypothesis HO, T
if t<t(cut)

Error of 1. kind: 1 L

P1(true hypothesis will be rejected)

05 r
Error of 2. kind:
P2(wrong hypothesis is accepted)
0
0 1 2 3 4 5
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Hypothesis testing

Important quantities for all classification tasks

I n
Efficiency: == P(selected and true) =1— F1

P(true)

P(selected and true)

Purity: P =
Y P(selected)

=1-—- P2

Also use dilution D =2P —1.

Choice of working point (i.e. cut-value ) according to ap-
plication.

Good test statistic maximizes area in P — e plane.

12 Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT



Purity

0.9

A statistical method is the -
better the nearer it reaches O N T N . O
the point (1,1) in the Different
purity-efficiency-plot cutsint

0.7 O AU N :

A

Optimal choice of working |
point according to particular >0 Optimal
task: How does the total error working point

of the analysis scale with
e und P?

05 lllllllllllllllllllllll

H
llllll

H H H
llll | l 111

0 0.1 C.2 0.3 0.4 C.5
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[ A
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Efficiency

Flavour-tagging in oscillation analyses: Signif. o< /e - (2P — 1)
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Sequential cuts: simple

Linear separation of correlated input variables by hyperplane
in n-dim. space:

Fisher-discriminant: maximises separation of expectation
values of two classes in units of the sum of their variances
Neyman-Pearson-Lemma: n uncorrelated variables are sep-
arated optimally by the likelihood ratio:

Or: neural networks (or support vector machines...)

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Neural networks:
Self learning procedures, copied from nature

Motor Cortex

' Parietal
Frontal Lobe ~ Cortex

Temporal Lobe Occipital

Brain Stem Lobe

Cerebellum

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010
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The information

(the knowledge, the expertise)
IS coded in the connections
between the neurons

! /v ' 'j ' - : .‘ \ | “".“‘
"', V7 /ﬂ(( 1 }. \ \ -,.‘

\\ '/( l e /,gs‘/‘}’}) : /."

f " 4 l! /,,( /|

Each neuron performs fuzzy decisions e

A neural network can learn from & ‘M? ‘
examples | |

Human brain: about 100 billion ( 10" ) neurons
about 100 ftrillion ( 10" ) connections

17 Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETA KIT
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Input _
Laver Hidden

Laver

Output

The output of node j in layer n is calculated from weighted
sum of outputs in layer n — 1:

(n)_f(z (n) (n L} (nj))

Each connection has associated a weight w(?), each node

- (n)
a bias wg,; -

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT



19

AT

Karlsruhe Institute of Technology

A non-linear monotonuous transfer function f(z) is applied
at the output of each node, e.g. the sigmoid function:

It maps the intervall (—oo0,0) to the compact (0,1).

Michael Feindt

—
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02

f(z) =

1

1+ exp(—=x)

Neural Networks and NeuroBayes School of Statistics 2010
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Training is the minimisation process of a loss function, dur-
ing that the network weights are changed such that the

deviation of the wanted output for a set of input vectors is
minimisesd.

Possible loss functions:
Sum of quadratic deviations
or entropy (maximum likelihood)

Backpropagation (Rumelhardt et al. 1986):

Calculate gradient backwards by applying chain rule
Optimise using gradient descent method. Step size??

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Difficulty: find global minimum of highly non-linear function
in high (~ >100) dimensional space.
Imagine task to find deepest valley in the Alps (just 2 dimensions)

Easy to find the nextegsss
local minimum...

21 - © Noura] NONUOTR R New s | of Statistics 2010 IEKP, KCETAKIT



We‘ve tried that but it didn‘t give good results

We‘ve tried that but it was worse than our 100 person-years
analytical high tech algorithm

We'‘ve tried that but the predictions were wrong

Yeah but how can you estimate systematic errors?

22 Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010
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Address all these topics and build a
professional robust and flexible neural
network package for physics, insurance,
bank and industry applications:
NeuroBayes®

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETA KIT
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L |

NeuroBayes® Teacher:

|
Lear_ning qf complex o \ww&‘%ﬁg 0
relationships from existing SR
. :
data bases (e.g. Monte TN
Carlo)
NeuroBayes® Expert:

Prognosis for unknown data

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETA KIT
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training and application

Historic or simulated

data
p NeuroBayes®
Data set lTeacher
a=...
o
t= |
\ 4
Expert system - .
Probability that hypothesis
is correct (classification)
Exp ertise or probability density

for variable t

Actual (new real) data

Data set \ 4
a=..

IEKP, KCETA KIT
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Classifications

Classification:

Binary targets: Each single outcome will be “yes” or “no*
NeuroBayes output is the Bayesian posterior probability
that answer is “yes* (given that inclusive rates are the
same in training and test sample, otherwise simple
transformation necessary).

Examples:

> This elementary particle is a K meson.

> This event is a Higgs candidate.

> Germany will become soccer world champion in 2010.
> Customer Meier will have liquidity problems next year.
> This equity price will rise.

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Conditional probability densities

Probability density for real valued targets:

For each possible (real) value a probability (density) is
given.

From that all statistical quantities like mean value, median,
mode, standard deviation, percentiles etc can be deduced.

Examples:
> Energy of an elementary particle
(e.g a semileptonically decaying B meson with missing
neutrino)
> Q value of a decay
> Lifetime of a decay
> Price change of an equity or option
> Company turnaround or earnings

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Expectation value Mode

AGEY

Standard deviation
volatility

Deviations from
normal distribution,
e.g. crash probability

z

28 Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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In particle physics

What is the probability density

of the true B momentum

in this semileptonic B candidate event
taken with the CDF Il detector

with these n tracks with those momenta and
rapidities in the hemisphere,

which are forming this secondary vertex
with this decay length and probability, this
invariant mass and transverse momentum,
this lepton information, this missing
transverse momentum, this difference in Phi
and Theta between momentum sum and
vertex topology, etc pp ?

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010
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Conditional probability densities
f(tlx)

Conditional probability density for
a special case x
(Bayesian Posterior)

Conditional probability densities
2 f(t|x) are functions of x, but also
e depend on marginal distribution f(t).

%tl- - L] n -

Y, Marginal distribution f(t)

F

| LL - - - -
T Inclusive distribution
] S | (Bayesian Prior)

30 Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Classical ansatz:
f(x|t)=f(t|x)
approximately correct
f(t]x) at good resolution
far away from
physical boundaries

X (measured)

Bayesian ansatz:

takes into account

a priori- knowledge f(t):
i . . T IT [— -Lifetime never negative

: 2 '- ' ‘ ' *  <True lifetime exponentially
f(x|t) | t (true) distributed

31 Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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The aim:

Note:
Conditional probability density contains much more information
than just the mean value, which is determined in a regression

analysis.
It also tells us something about the uncertainty and the form of the

distribution, in particular non-Gaussian tails.

32 Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Main message:

NeuroBayes is a very powerful algorithm
robust — (unless fooled) does not overtrain, always finds
good solution - and fast
« can automatically select significant variables
* output interpretable as Bayesian a posteriori probability
« can train with weights and background subtraction
* has potential to improve many analyses significantly
* in density mode it can be used to improve resolutions (e.g.
lifetime in semileptonic B decays)
NeuroBayes is easy to use
Examples and documentation available
Good default values for all options —>fast start!
«  Direct interface to TMVA available
* Introduction into root planned
« Touse from C,C++, Fortran, Python etc.
« Two code generators available

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETAKIT
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> is based on neural 2nd generation algorithms,
Bayesian regularisation,
optimised preprocessing with transformations
and decorrelation of input variables and
linear correlation to output.
> learns extremely fast due to 2nd order methods and
O-iteration mode
> is extremly robust against outliers
> is immune against learning by heart statistical noise
> tells you if there is nothing relevant to be learned
> delivers sensible prognoses already with small
statistics
> has advanced boost and cross validation features
> is steadily further developed

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Equalisation and

Preprocesssing optimal linear modelling

Network Training

Control capacity
(avoid overfitting)

AT
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Strategy
summary

Just learn non-linear
corrections

Calculate whatever
IS needed

Postprocesssing

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010

IEKP, KCETA KIT



AT

stitute of Technology

Bayesian Regularisation

Use Bayesian arguments to regularise network learning:

P(datal|theory) P(theory)
P(data)

P(theory|data) =

Learn only statistically relevant information, suppress statistical noise

36 Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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In particle physics
What is the probability density
of the true B momentum

in this semileptonic B candidate event
taken with the CDF Il detector

with these n tracks with those momenta and
rapidities in the hemisphere,

which are forming this secondary vertex
with this decay length and probability, this
invariant mass and transverse momentum,
this lepton information, this missing
transverse momentum, this difference in Phi
and Theta between momentum sum and
vertex topology, etc pp

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010
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NeuroBayes solution ansatz

Discretize f(t) into N intervals of same area by
equalisation (nonlinear transformation t —=> s)

Train a neural network with N output nodes to the N binary decisions:
The true tis larger than /lower than threshold i

Fit smooth function (cubic spline) through N net outputs:
= cumulated conditional probability in transformed variable s

Analytic differentiation returns probability density function in
transformed variable s
Back transformation to variable t returns f(t|x) I

38 Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Equalisation and discretisation

discretization
of f(t)

into N intervals

of same area

(=40

nonlinear transformation
t->s
to flatten p.d.f. f(t)

@ 0204 0608 1 12 14 16 14 {

39 Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETAKIT
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(Under some contollable conditions...) Theoretical
basis

neural network outputs can be interpreted
as Bayesian a posteriori probability
that the classification is correct

Neural Net Output (node 10 of 20)
1

2000 [
| | ] 0.9
Purity of a given 2o 0.8
output is s i 0.7
o 1250 | Signal 3 0.6
Inear tunction 1000 B Background 0.5
of the | 0.4
750 | '
output value | 02

500 | 0.2
230 | 0.1

O 05 0 05 1 %1 05 0 05 1
0 0

Distributions Purity

40 Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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NeuroBayes Network architecture: Teacher™

5

°¢

@ 4—0;\
U)O » *Oku)
=@ 0,5
‘8 ®
’ b=
SO 4—@4%

4_
<__
4_

488
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School of Statistics 2010

Neural Networks and NeuroBayes

Michael Feindt

NeuroBayes network architecture
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20 net output nodes 3 exampl e ev ent S

— 8 .
5 7 | an.alyt.lc
% gl derivative
5\ of spline fit
spline fit 41\
through 3F\
outputs : 21
-0.8 1
0 0.2 04 0.60.8 s1 0 0.204 06 0.8 s1 aaie
=3.5 transformed
x - - -
= 3 f ‘ | T distributions
median, | 25 . [ YR / f(t]x)
mean, l
max 15
likelihood, | - inclusive
~error o N distributionl
intervals é ——

02 04 06 08 1 12 14 16 1.8 t2
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automatic error propagation

toy experiment : 5T |38000
measure (with errors) \ 2000
decay length d 4 5000
*momentum p

3 5000

and train for proper time t:

t resol@ion

Max likelihood estimate
median estimate

Result :
networks learns automatically from dda :
« that it should divide d by p

* how it should propagate errors
« true lifetimes are never negative (although
both measured d and p can be)

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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NeuroBayes“superior to other networks:

deploys second generation neural network algorithms

first network to learn complete probability density
distribution in addition to classification

extremely fast training by deploying second order
methods Even faster with O-iteration mode

risk of overtraining extremely low due to
Bavesian regularisation

extremely robust due to sophisticated and
automatic preprocessing

minimal risk to get 'stuck’ in bad local minimum

surrogate-training to test statistical bias

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT



AT
<phi-t> o

Why preprocess input variables?
Shouldn’'t the network learn it all?

Yes, but ...

Optimisation in many dimensions difficult
Example (2D): Deepest valley in Swiss Alps
Isn't the next valley deeper 7

— difficult to find out once you are down there.

Now try to find minimum in O(1000) dimensions . ..

Preprocessing: “Guide” network to best minimum

46 Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Global preprocessing:

e normalisation and decorrelation
— new covariance matrix is unit matrix

e rotate such that first variable contains all linear
information about mean, second about width, etc.

e automatically recognise binary and discrete variables

e direct connection between input and output layer
— network learns deviations from best linear estimate
(for shape reconstruction)

47 Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Non-linear mapping
to flat distribution
between -1 and 1

by ranking

Non-linear mapping
to standard Gaussian

De-correlation
by diagonalisation
of covariance matrix

Normalisation

by dividing by
sqrt of eigenvalues
of covariance matrix

Michael Feindt Neural Networks and NeuroBayes

ooooooooo

input variables |

At this stage

all input variables

are
sindependent,
«centered at O
=1
» Gaussian
(if no discrete
input variables)

New
covariance
matrix
IS unit matrix

completely automatic

absolutely robust

School of Statistics 2010 |IEKP, KCETA KIT
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Calc correlation coefficients
of input variables with
moments (defined by

orthogonal polynomials)

of target distribution g(s)

Rotate the correlation to
1. moment into 1.

variable by means of
Jacobian rotations

Do for all dimensions i=2...N

Rotate the correlation to
I. moment into input vector
component i

Michael Feindt Neural Networks and NeuroBayes

KT

Preprocessing of

iInpu

t variables Il

Degeneracy of new
covariance matrix

arbitra

allows
ry rotation of

n—dimensional basis

Rotate such that
first variable contains all linear information
on the mean value,

second all linear information on width,
i—th variable on i—-th moment.

The larger i, the more
statistical uncertainty:
high frequency oscillations in solution
posed

School of Statistics 2010

problem
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individual Variable preprocessing:

50

variables with default value / é function

regularised 1d correlation to training target via
spline-fits
(monotonous or general continuous variables)

ordered or unordered classes with Bayesian
regularisation

decorrelation of the influence of other variables on the
correlation to training target

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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analyse correlations:
covariance matrix: Vi

J\ evenh — < >) ( — < L >)
correlation matrix: pi; = ﬁ

i 2
after preproc: < z; >=1 and o; =1

training target

COVA?ANC\ MATRIX (IN PERCENT) (truncated at variable 16)

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
0 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 |100.0 | 66.0 48.6 31.1 39.3 6B1.1 77.3 6E7.0 78.5 6€1.2 48.7 6.1 8.9 6.5 9.2
2 66 0]1100.0 41.5 25.7 46.8 37.6 ©64.0 45.4 58.4 44.2 48.9 6.5 8.9 6.4 8.7
3 8.6 | 41.5 100.0 33.6 23.6 27.7 41.8 33.0 48.3 31.6 34.1 7.3 9.4 4.9 9.7
4 31 1| 26.7 33.6 100.0 30.7 17.3 26.4 14.7 24.1 13.4 50.5 17.9 19.7 8.6 20.5
6 | 39.3 | 45.8 23.5 30.7 100.0 23.6 38.6 26.2 37.6 22.3 66.1 8.7 9.9 13.3 14.8
6 | 61.1 | 37.6 27.7 17.3 23.6 100.0 40.8 43.2 41.56 20.2 27.7 11.5 10.8 8.1 12.0
7 |77.3| 4.0 41.8 26.4 38.6 40.8 100.0 6B7.8 82.9 61.8 47.2 6.8 9.6 7.4 10.3
8 | 67.0| 45.4 33.0 14.7 26.2 43.2 §57.6 100.0 655.4 47.8 28.1 7.4 9.4 7.9 11.7
9 | 76.6| 58.4 48.3 24.1 37.6 41.6 82.9 65.4 100.0 650.8 44.4 8.7 11.0 6.1 10.1

10 | 61.2 | 44.2 31.6 13.4 22.3 29.2 61.6 47.8 50.8 100.0 27.6 ~-1.2 2.6 1.7 2.7

11 (48.7 | 48.9 234.1 650.5 6&6.1 27.7 47.2 28.1 44.4 27.5 100.0 11.2 12.8 10.8 16.4

12 6.1 6.5 7.3 17.9 8.7 11.86 6.8 7.4 8.7 -1.2 11.2 100.0 71.2 4.6 45.8

13 8.9 8.9 9.4 19.7 9.9 10.8 9.5 9.4 11.0 2.6 12.8 71.2 100.0 6.4 63.1

14 6.5 5.4 4.9 8.6 13.3 8.1 7.4 7.9 5.1 1.7 10.8 4.6 5.4 100.0 72.8

15 9.2 8.7 9.7 2.5 14.8 12.0 10.3 11.7 10.1 2.7 18.4 45.6 63.1 72.6 100.0

16 1.7 1.8 1.7 1.0 3.2 2.6 2.3 6.2 2.7 -0.3 1.1 1.0 1.2 0.9 1.2

17 7.7 4.0 3.0 2.1 2.4 1.0 6.7 1.2 4.9 3.5 2.9 0.4 0.5 0.3 0.5

18 2.2 1.8 1.6 -1.0 0.1 0.9 4.3 10.8 3.4 -0.9 0.2 -1.1 -0.8 -1.1 -1.2

19 4.9 2.8 2.0 0.8 1.3 0.5 3.7 1.5 3.6 2.3 1.7 0.2 0.4 0.1 0.2

20 \15.5/ 9.5 6.1 1.2 6.4 6.4 132.4 10.8 11.4 8.9 5.9 1.2 1.9 2.4 2.3

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETAKIT
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determine relevance:

- search for variable

with the smallest information loss if removed

- remove variable, calculate information l0ss

- start over until no

variables sorted by significance:
1 most relevant variable 9 corr
2 most relevant variable 2 corr
3 most relevant variable 10 corr
4 most relevant variable 6 corr
5 most relevant variable 7 corr
6 most relevant variable 4 corr
7 most relevant variable 3 corr
8 most relevant variable 20 corr
9 most relevant variable 17 corr
10 most relevant variable 11 corr
11 most relevant variable 8 corr
12 most relevant variable 15 corr
13 most relevant variable 19 corr
14 most relevant variable 12 corr
15 most relevant variable 5§ corr
16 most relevant variable 18 corr
17 most relevant variable 14 corr
18 most relevant variable 13 corr
19 most relevant variable 18 corr

if wanted, only keep

more variables left

76.4778671 , in sigma: £09.501007
26.2002564 , in sigma: 175.20752
20.9467106 , in sigma: 139.548477

16.4719133 , in sigma: 103.074997 ; ;

13.2006607 , in sigma: 87.9437485 mpUt variables

7.84604727 , in signa: 52.2702837

5.32358466 , in signa: 35.4661026 ordered t))/ relevance
4.56365763 , in sigma: 30.336792 ( =11

3.23235636 , in sigma: 21.5341835 standard deviations
316148114 , in sigea: 21.0620136  of gdditional information)
2.36905959 , in signa: 15.7888403

2.18982673 , in signa: 14.5887823

1.61612226 , in sigma: 10.7667217

1.33065099 , in sigma: 8.86495209

0.369548619 , in sigma: 2.46195036

0.33780846 , in sigma: 2.26050402

0.205621392 , in sigma: 1.36988446

0.178528279 , in sigma: 1.18936813

0.0969125181 , in sigma: 0.645638108

variables with significance > n * 0.50
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< phi-t>

NeuroBayes" Teacher
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Karlsruhe Institute of Technology

< phi-t >
NeuroBayes"” Teacher

correlation matrix of input variables

Variable 1: Training target
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< phi-t >

NeuroBayes" Teacher
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Purity vs. efficiency
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" P
0.1 02 03 04 0.5 06 07 08 09 1

efficiency
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echnology

AVOT
o

<phi-t> e+

during training: Bayesian ERM/SRM: minimize VC dimension

e remove not significant weights / nodes:
kill weight from layer N knot M to knot K
— only statistically significant connections remain

e Every 10 iterations:
- print significance of nodes in input and hidden layer
- save snapshot in rescue.nb

start with:
RANK 12 NODE 8 --> 37.9634628 signma out 19 active outputs
RANK 13 NODE 3 --> 36.5007275 sigma out 19 active outputs

RANK 14 NODE & -——> 35.56478659 signa out 19 active outputs
RANK 15 NODE 17 --> 33.1050377 =sigma out 19 active outputs

?ggomes:

RANK 12 NODE 11 --> 40.8323898 sigma out 19 active outputs

RANK 13 NODE 13 --> 34.909874 signa out 19 active outputs

RANK 14 NODE 14 --> 29.9184074 sigma out 18 active outputs .

RANK 16 NODE 17 --> 27.1266937 sigma out 17 active outputs 4 PIU ned 2 connections

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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<phi-t>

after training: Analysis of control plots

contribution
from error
training sample)

E—(no test sample)

W0 0N N WTOMNM NN

0 D VLY SN W T WD

Tratting e o on Tesring | weapon

400 W3 11 Len L] | 401: BEWe it Lo amampo |
abor # | =
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AVIT

Log-scale!

backgroung
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Karlsruhe Institute of Technology

from experiments DELPHI, CDF Il, AMS, CMS and Belle
used NeuroBayes® or predecessors very successfully.

Many of these can be found at
www.neurobayes.de

Talks about NeuroBayes® and applications:
www-ekp.physik.uni-karlsruhe.de/~feindt - Forschung

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETAKIT
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Karlsruhe Institute of Technology

Discovery of orbitally excited B**+ und B_s**- mesons
First observation of particle antiparticle oscillations of B_s- mesons

Measurement of lifetime difference of short and long lived B_s
mesons and limits on CP-violating parameters

Spin-parity determination and most precise mass determination
of X(3872) (exotic, not a normal meson)

Discovery of single top quark production mechanism

First exclusion of a 160-170 GeV standard model Higgs boson

IEKP, KCETA KIT
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Press (Die Welt, April 21, 2006)
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Eatungte waltute of Yo

DELPHI: (mainly predecessors of NeuroBayes in BSAURUS)
Kaon, proton, electron id

Optimisation of resolutions inclusive B- E, ¢, 6, Q-value

B**, B,** enrichment

B fragmentation function

Limit on B_,-mixing

B%-mixing

B- F/B-asymmetry

B-> wrong sign charm

2 IEKP, KCETA KIT



Eaurate wallute of Yedhwobogy'

CDF II:

Electron ID, muon ID, kaon/proton ID

Optimisation of resonance reconstruction in many
channels (X, Y, D, D_, D.**, B, B_, B**,B_**)

Spin parity analysis of X(3182)

Inclusion of NB output in likelihood fits

B-tagging for high pt physics (top, Higgs, etc.)

B-Flavour tagging for mixing analyses (new combined
tagging)

B0, B.-lifetime, AI', mixing, CP violation

Discovery of single top quark production

Higgs search, first high energy Standard Model exclusion
limits

IEKP, KCETA KIT



CMVIoS:

B-tagging

single top physics
Higgs searches

Belle:

Continuum suppression

B full reconstruction

B flavour tagging

KEKB accelerator optimisation

H1:

Calorimeter response optimisation

LHCb, ATLAS

First studies

IT

Eaurngte el hute of

IEKP, KCETA KIT
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Eaurate wallute of Yedhwobogy'

from experiments DELPHI, CDF Il, AMS, CMS and Belle
used NeuroBayes® or predecessors very successfully.

Many of these can be found at
www.phi-t.de — Wissenschaft > NeuroBayes

Talks about NeuroBayes® and applications:
www-ekp.physik.uni-karlsruhe.de/~feindt — Forschung

IEKP, KCETA KIT



d > K'K

600 [
500 |-
400 |
300 |
200 |

100 |

Untergrund

Michael Feindt

Kaon—Klassifizierung
mit NeuroBayes

1.02 1.04 1.06 1.08

Neural Networks and NeuroBayes

1.1

School of Statistics 2010

SKIT

Eatarute wetiute of Yedhwsokogy

Classification:
Hadron ldentification
(DELPHI at CERN):

Doubled signal strength
at constant

background level

by neural network
classification

original method :
several 10 millions CHF
cost

NeuroBayes
predecessor:

Additional factor of 2
with very limited
additional effort

IEKP, KCETA KIT
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Eaanste woliute of Tedhvadogy

LEP 2 relative B-Hadronen Energieauflésung

veuo | Optimised
600 -

: reconstruction of real
1400 |- NeuroBoyes valued quantities:

: extended regression

1200 |
1000 |
800 much improved resolution
600 (narrow peak around +-0)
400 by NeuroBayes-technology
200

ol

-100% -50% 0% 50% 100%
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Eariste wnd fute of Lo hwnckogey

Resolution of azimuthal angle of a
inclusively reconstructed B-hadrons in
the DELPHI- detector

| first neural reconsltrug:_tilon of a direction

NeuroBayes
phi-direction

Best
“classical"
chi**2- fit
(BS:'AU ngS)

No selection: After selection cut on estimated error:
Resolution massively improved, no tails
==> allows reliable selection of good events |

Improved resolution

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETAKIT



purity

CDF Run Il Monte Carlo - Preliminary

e P 2
0.9 ' : __‘*“‘"—i‘_.,_‘ .
g_sf_ ....................................................................................... N i % N ]
DTf_ .........
= . SENet - NeuroBayes (pt>2 GeV/c)|
0.5
= . SENet - Jetnet  (pt>2 GeV/c)
04—
9‘33_ .........
= cut based
0.2 i
10 | SR U WO S— S T 1
0:IIIlllllllllllllliiillllilll!llllllllllll]lllllII
0 0.1 04 05 06 07 08 09 1

Michael Feindt

efficiency

Neural Networks and NeuroBayes

KIT

» Thesis U. Kerzel:

on basis of Soft Electron Collection

(much more efficient than

cut selection

or JetNet with same inputs)

- after clever preprocessing by hand
and careful learning parameter
choice this could also be as good
as NeuroBayes®

School of Statistics 2010 IEKP, KCETA KIT
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Karlsruhe Institute of Technology

Hadron collider: No good MC for backgrounds available
MC for resonance production with different J°C¢ assumptions

|dea: take background from sidebands in data
check that network cannot learn mass

o _
2 - resonance
E 8000 — from Monte Carlo
N 7000
E. -
6000 —
8 -
* -
5000 —
4000 — background
- from sidebands
3000 :—
2000 :—
1000 :—
‘: " ' i l L " L i l A L L 1 I L 1 1 2 I L 1 L 1
8.6 3.65 3.7 3.75 38 3.85 39 3.95 4

mass(J/¥ r* ) [GeV/c’]
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Karlsruhe Institute of Technology

| mass (J/Psi Pi Pi) |

8000 !
7000 '
— 1
6000 :
- * " NeuroBayes® selection
5000 — ' ' " Mtwﬂfuiﬁﬁ*#"“,ﬁ*ﬁ# #ﬂ*ghtw*#hﬁfﬁmﬁ
- W4 H*Mwm v 450 =
4000/ o o - 1
- it 400
30001 " S {
ol 350
2000 .
- 300/ |
1000 - |
- 250
- 1 11 | L1 1 1 | 11 1 1 | 11 1 1 | 1 1 1 | 1 11 I 11 1 :
06 365 37 37538 385 39 3 .00 =
- It = ) 1“”
Y(2S) and X (3872) in J/yr T I
5 ++ +++ i wwq h*WﬁWWWMM
*muhfhﬁ*hfﬁﬂﬂw G ﬁﬁﬁwﬁ*ﬂ Sl + fy

11 | T | | I I | I 111 1 I | T - | | T | I 11 1 1 I | T -
8.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4
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CDF Run 2 Preliminary 1.0 fb’

< 40F

_
%111111111[111111111

—B'K
B*K*
— Signal
— Background

.00

AT

Institute of Technology

First observation of B_s1
and most precise of B_s2*

Selection using NeuroBayes®

0.05 0.10 0.15 0.20

M(B'K)-M(B")-M(K) [GeV/c?
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all-track prob. ratio

all tracks

SCN

L

GCN

same side prob. ratio

LCN

general prob. ratio

!

lepton prob. ratio

combined
tag
network

flavour
tag

[}

vertex charge

T = ¢D? = 4.6% [Without particle ID
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T =¢eD? =6.

.
‘. ':/{I

Including particle ID

Michael Feindt Neural Networks and NeuroBayes
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Karlsruhe Institute of Technology
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— B mesons
— B mesons

0.4 0.6 0.8 1.0
NNTag
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Karlsruhe Institute of Technology

Training with weighted events (e.g for JPC-determination)

Data-only training with sideband subtraction (i.e. negative
weights) and sPlot

Construction of weights for MC phase space events such
that they are distributed like real data

Interpretation of NeuroBayes output as Bayesian a
posteriori probability allows to avoid cuts on output
variable but instead

-- inclusion into likelihood-fits (B-mixing, CP-violation)
-- usage with sPlot to produce “background free“ plots

Research on finding signals in data without having good
background model

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 IEKP, KCETA KIT



AKIT
Hadron collider: Fast resonance S/B optimisation without MC:

dea: 1raiNing with background subtraction
Signal: Peak region weight 1

Sideband region with weight -1
Background: Sideband region with weight 1

~ 14000
E 12000} Y- ptw
§ 10000 works very well!
E 8000[—
- also for Y(2S)
F and Y(3S) !
\MN Although just
B trained on Y(1S)

9.6 9.8 10 102 104 106 1038 11

mass(u* 11") [GeV/c’]
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Karlsruhe Institute of Technology
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¥ 8000
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NeuroBayes muon identification

Massive background

rejection without
signal loss

—— all events
—— Res.Net cut

—— Res.Net anticut

Nu N
;3m - MuonlD cut
[ -
= L
n L
- L
20000
E I
3'."; L
= L
0 -
10000
0» S fvﬁr R r—
3.05 3.1 3.15
v M, [GeV/c]

77 Michael Feindt

IT

Karlsruhe Institute of Technology

- (2S) signal (CDF )

[—lllllllllllllll

— all events

- Res.Net cut
—— Res.Net anticut
MuonlD cut

AL gt

3.75 3.8
M., [GeV/c]

Neural Networks and NeuroBayes

School of Statistics 2010

also works on JAp (small effect due to already good S/B)
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Karlsruhe Institute of Technology

Low mass uu resonances (CDF Il)

Cut on Jhp network

(distinguishes a K K ® ¢
resonance m—
decaying into —— ResNet cut
tWO mUOnS N& N —— Res.Net anticut
> : MuonlD cut
from all the rest S 40000
(non-muons, = i
combinatorics < -
) < 30000
~ N
3 -
=20000
= -
v i
_ 10000
reject
accept
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NeuroBayes B, to JJy ® selection without MC (CDF I1)

2 10000k 3
= - =
N B N
% 8000 @
H I )
= =
- —
- - =
& s000|- L

4000

2000/

d data""" v 525 53 535 654 6545 55 65655 56

2 525 53 535 54 545 55 555 56

M1y 0) [GeV] NeuroBayes trainings o cev

> 5 _
v © 100
= 2 100
~ = [ \ 4
8 g 5
= E 0
T g s0
40:
20f
cub TN ETUTETEE PSR ENUTTEE TR
- ralrﬂ“ﬂq 5.6 p Bi é“e; 2.35 54 545 55 555 56
(Jhy ¢) [GeV] M(J/y ¢) [GeV]
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NeuroBayes B, to JJy ® selection without MC (CDF I1)

# Signal

||||||||||

sNEE

* 3 2 2 B B B
| bkl bidedd Wb MARL

|||||||||

Significance

ST

#Background >
= 100

N0~ N

ol % P

= a0 . .g

wf ' £

- ...\_'_ ’

N_signal = 757.4+-28.7,
mass 5366.6 +- 0.4 MeV
lifetime 432.3 +- 17.6 mu

80 Michael Feindt

Neural Networks and NeuroBayes

I\‘I:’IIIIII 1 \H

e 2
52 525 53 535 54 545 55 555 56

M (J/y ) [GeV]

no lifetime bias by
input variables

01 005 0 0.05 01 015 I02 625 0. or NeuroBayeS

ct(J/y ¢) [em] I
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AT

stitute of Technology

Making MC for hadronic background without specific model:
Multidimensional correlated regression using NeuroBayes

Use data in non-resonance region as signal
Use phase space MC as background

Train NeuroBayes network.

NN output O is Bayesian a posteriori probability that event stems

from signal (i.e. data distribution) rather than phase space MC.:
O=P(S) with P(S)+P(B)=1

Calculate weight W= P(S)/P(B) = O/(1-0)

MC modelling of complicated background is possible!
Opens new roads for likelihood fits

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT
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Belle B-factory
running very successfully
since 2000.

KIT joined Belle
Collaboration in 2008
and introduced
NeuroBayes.
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Karlsruhe Institute of Technology

Purity vs. efficiency for different network cuts
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NeuroBayes enhances efficiency of flavour tagging
calibration reaction B-> D* | v by 71% at same purity



Belle: Full reconstruction of B mesons in >1000 decay chains.

Hierarchical system with > 100 NeuroBayes networks, fully automatic.
Preliminary gain about factor 2 compared to classical algorithm.

BO
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AT

Karlsruhe Institute of Technology
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TMVA Performance

Background rejection versus Signal efficiency ]
1
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Summary table for MLP results
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Signal efficiency
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Karlsruhe Institute of Technology

Belle: Non-BB- continuum-
suppression for reconstruction

of a rare B decay mode

rformance

Improvement is larger
especially for the analysis

O e Slg(.zeif’icr;e.;‘cy Slsz;;f:ac:.';cy (23 PaI:sa./t:.»e Pars.) S
99 % 43% 54% 1.26 For DK ADS mode,
95% 69% 76% 1.10 J 41% .increase of signal i? ob.tained
90% 79% 85% 108 ; with the same BG repc@on!
80% 88% 92% 1.05 fl (Of course we will re-optimize cut.)
: BG rejection Sig. efficiency  Sig. efficiency Rate
Comparison with (2 Pars.) (12 Pars.) (22 Pars./2 Pars.)
TMVA algorithms o5 44% 62% 1.41
shows advantage il 95% 69% 81% 1.17
of NB 90% 79% 89% 1.13
80% 88% 95% 1.08 30
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First application in LHCb: A baryon selection. A\‘(IT
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Bindings and Licenses

NeuroBayes® is commercial software belonging to Phi-T GmbH.

License files needed.
Special rates for public research.

Essentially free for high energy physics research.

NeuroBayes is nowunderway to become an officially supported CERN

tool. It can be found at
/afs/cern.ch/sw/lcg/external/neurobayes/10.4

NeuroBayes core code written in Fortran.
Libraries for many platforms (Linux, Windows, ...) available.
Bindings exist for C++, C, Fortran, java, lisp, python, etc.

Two code generators for easy usage exist.
Interface to root-TMVA available (classification only).

Michael Feindt Neural Networks and NeuroBayes School of Statistics 2010 |IEKP, KCETA KIT



AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

C++ NeuroBayes Teacher code fragment (1)

#include "NeuroBayesTeacher.hh*

lIcreate NeuroBayes instance
NeuroBayesTeacher* nb = NeuroBayesTeacher::Instance();
const int nvar =14; //number of input variables

nb->NB_DEF_NODE1(nvar+1); I/l nodes in input layer

nb->NB_DEF_NODE2(nvar); I/ nodes in hidden layer
nb->NB_DEF_NODE3(1); I/l nodes in output layer
nb->NB_DEF_TASK("CLA"); /I binominal classification
nb->NB_DEF_ITER(10); /| number of training iterations

nb->SetOutputFile("BsDsPiKSK _expert.nb"); Il expertise file
nb->SetRootFile("BsDsPiKSK _expert.root"); Il histogram file
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C++ NeuroBayes Teacher code fragment (2)

Il in training event loop
nb->SetWeight(1.0); //set weight of event
Il set Target
nb->SetTarget(0.0) ; // set Target, this event is BACKGROUND,
Il else set to 1.

InputArray[0] = GetValue(back,"BsPi.Pt"); // define input variables
InputArray[1] = TMath::Abs(GetValue(back,"Bs.D0"));

nb->SetNextinput(nvar,InputArray);
llend of event loop

nb->TrainNet(); llperform training

Many options existing, but this simple code usually already gives very good results.
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C++ NeuroBayes expert code fragment

#include "Expert.hh"
Expert* nb = new Expert("../train/BsDsPiKSK_expert.nb",-2);

InputArray[0] = GetValue(signal,"BsPi.Pt");
InputArray[1] = TMath::Abs(GetValue(signal,"Bs.D0"));

Netout = nb->nb_expert(inputArray);
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Documentation

Basics:

Web Sites:
(Company web site, German & English)

(English site on physics results with NeuroBayes &
all diploma and PhD theses using NeuroBayes, talks, Manuals, FAQ and
discussion forum)

(some NeuroBayes talks can be
found here under -> Forschung)
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Summary

Neural networks are flexible and versatile multivariate tools.

However, some problems are known (step size dependence, long CPU time,
possibility of overtraining)

All these problems are overcome in NeuroBayes.

NeuroBayes is meanwhile much more than a neural network.
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