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Predictable 

The result of simple classical physics processes is exactly  
predictable 
(one cause leads to one  
definite unique result,  
determinism) 

Examples: 

pendulum, planets, 
billard, electromagnetism… 
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Unpredictable 

Purely random processes are not predictable at all  
(even if the initial conditions are completely known!) 

Examples: 

Lottery 
(Too many tiny influences and   
branchings, deterministic chaos) 

radioactive decay 
(quantum mechanics) 

electronic noise 
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Quantum Mechanics:  
In every collision  
something else 
happens! 

Experiments: 
Observe mean 
values, distributions, 
correlations, 
determine parameters 
(mean lifetime, spin, 
parity etc) from that. 
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Probability 

Many systems in nature and life:  
Mixture of predictable and unpredictable  
(quasi-) random or chaotic components. 

 Probability statements, statistics. 
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Extraction of a predictable component from 
empirical data (or Monte Carlo simulations) 

Statistically relevant predictions for future events  

Individualisisation of  
probability statements: 

conditional probabilities: f(t|x), 
dependent on individual event with properties x 
instead of general (a priori) probability f(t)  

 mean event 

individual event 

NeuroBayes core technology: 
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Because of                                                   it follows that 

Bayes’ Theorem (1) 
Conditional Probabilities:  

Bayes´ 
Theorem 
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Bayes’ Theorem (2) 
Extremely important due to the interpretation  A=theory  B=data   

Posterior Evidence 

Likelihood Prior 
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Bayesian vs. classical statistics 
Classical statistics is just a special case of  Bayesian statistics:  

Maximisation of likelihood instead  
of a posteriori probability means: 

Implicit assumption that prior  
probability is flatly distributed,  

i.e. each value has same probability. 

Sounds reasonable, but is in general wrong!  
Does not mean that one knows nothing! Posterior Evidence 

Likelihood Prior 
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Classification == Hypothesis testing  

Cut in a 1-dimensional real 
test-statistic which is correlated 
to the probability of hypothesis 
H0: 
Accept hypothesis H0,  
if t<t(cut)  

Error of 1. kind: 
P1(true hypothesis will be rejected) 

Error of 2. kind: 
P2(wrong hypothesis is accepted) 
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Hypothesis testing 

A statistical method is the  
better the nearer it reaches  
the point (1,1) in the 
purity-efficiency-plot  

Optimal choice of working 
point according to particular 
task:  How does the total error 
of the analysis scale with  
ε und P?	



0.7   0.8     0.9     1.0 

Optimal 
working point 

Different  
 cuts in t 
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Determining the working point  
(scan through cuts on network output) 
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Construction of a test statistic: 
How to make 100 dimensions one real number… 
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Neural networks 

Neural networks: 
Self learning procedures, copied from nature 

Parietal  
Cortex Frontal Lobe 

Motor Cortex 

Temporal Lobe 

Brain Stem 

Occipital  
Lobe 

Cerebellum 
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Neural networks 

The information  
(the knowledge, the expertise) 
is coded in the connections 
between the neurons 

Each neuron performs fuzzy decisions 

A neural network can learn from 
examples 

Human brain: about 100 billion   ( 1011  ) neurons 
                       about 100 trillion  ( 1014 )  connections 
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Neural Network  

basic functions 
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Neural network transfer functions 
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Neural network training 

Backpropagation (Rumelhardt et al. 1986):  
Calculate gradient backwards by applying chain rule   
Optimise using gradient descent method.  Step size?? 
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Neural network training 
Difficulty: find global minimum of highly non-linear function 
in high (~ >100) dimensional space. 
Imagine task to find deepest valley in the Alps (just 2 dimensions) 

Easy to find the next  
local minimum... 

but globally... 
...impossible! 
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Naïve neural networks and criticizm 
We‘ve tried that but it didn‘t give good results   
                  - Stuck in local minimum 
                  - Learning not robust 
We‘ve tried that but it was worse than our 100 person-years  
 analytical high tech algorithm 
                  - Selected too naive input variables 
                  - Use your fancy algorithm as INPUT !   
We‘ve tried that but the predictions were wrong 
                  - Overtraining: the net learned statistical fluctuations 
Yeah but how can you estimate systematic errors? 
                  - How can you with cuts when variables are correlated? 
                  - Tests on data, data/MC agreement possible and done. 
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Address all these topics and build a 
professional robust and flexible neural 
network package for physics, insurance, 
bank and industry applications: 
NeuroBayes®  
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NeuroBayes®  principle 

NeuroBayes®  Teacher: 
Learning of complex  
relationships from existing 
data bases (e.g. Monte 
Carlo) 

NeuroBayes® Expert: 
Prognosis for unknown data 

Output 

Input 

Si
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Postprocessing 

Preprocessing 

Michael Feindt        Neural Networks and NeuroBayes        School of Statistics 2010  



IEKP, KCETA,KIT  25 

Probability that hypothesis 
 is correct (classification) 
or probability density 
for variable  t 

How it works: training and application 
Historic or simulated 
data 

Data set 
a = ... 
b = ... 
c = ... 
.... 
t = …! 

Actual (new real) data 

Data set 
a = ... 
b = ... 
c = ... 
.... 
t = ? 

Expert system 
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Classification:   
Binary targets: Each single outcome will be  “yes“ or “no“  
NeuroBayes output is the Bayesian posterior probability 
that answer is “yes“ (given that inclusive rates are the 
same in training and test sample, otherwise simple 
transformation necessary). 

Examples: 
> This elementary particle is a K meson.  
> This event is a Higgs candidate. 
> Germany will become soccer world champion in 2010.  
> Customer Meier will have liquidity problems next year. 
> This equity price will rise.  

NeuroBayes® task 1: 
Classifications 
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NeuroBayes® task 2: 
Conditional probability densities 

Probability density for real valued targets:   
For each possible (real) value a probability (density) is 
given.  
From that all statistical quantities like mean value, median, 
mode, standard deviation, percentiles etc can be deduced. 

Examples: 
> Energy of an elementary particle  
   (e.g a semileptonically decaying B meson with missing 
neutrino)  
> Q value of a decay 
> Lifetime of a decay  
> Price change of an equity or option  
> Company turnaround or earnings     
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Prediction of the complete probability 
distribution  – event by event unfolding - 

Mode Expectation value 

Standard deviation 
volatility 

Deviations from  
normal distribution, 
e.g. crash probability 
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Conditional probability densities  
in particle physics 
What is the probability density  
of the true B momentum  
in this semileptonic B candidate event  
taken with the CDF II detector  

with these n tracks with those momenta and 
rapidities in the hemisphere,   
which are forming this secondary vertex 
with this decay length and probability, this  
invariant mass and transverse momentum, 
this lepton information, this missing 
transverse momentum, this difference in Phi 
and Theta between momentum sum and 
vertex topology, etc  pp ?  
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Conditional probability densities  
f(t|x)  

Conditional probability densities  
f(t|x) are functions of x, but also 
depend on marginal distribution f(t). "

 Inclusive distribution 
(Bayesian Prior) 

Conditional probability density for 
a special case x 

(Bayesian Posterior)  

Marginal distribution f(t) 
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Classical ansatz: 
f(x|t)=f(t|x) 

approximately correct  
at good resolution 

far away from  
physical boundaries  

Bayesian ansatz: 
takes into account   
a priori- knowledge f(t): 
• Lifetime never negative 
• True lifetime exponentially 
  distributed 
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Aim:  
Bayesian estimator            for a single 
multidimensional measurement      .     

" Components of    may be correlated. 
" Components of    should be correlated to t or its uncertainty.  
" All this should be learned automatically in a robust way from data 
bases containing Monte-Carlo simulations or historical data.  

Note:  
Conditional probability density contains much more information 
than just the mean value, which is determined in a regression 
analysis.  
It also tells us something about the uncertainty and the form of the 
distribution, in particular non-Gaussian tails. 
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Main message: 
NeuroBayes is a very powerful algorithm    
•       robust – (unless fooled) does not overtrain, always finds 
            good solution - and fast    
•       can automatically select significant variables  
•       output interpretable as Bayesian a posteriori probability 
•       can train with weights and background subtraction 
•       has potential to improve many analyses significantly  
•       in density mode it can be used to improve resolutions (e.g. 
             lifetime in semileptonic B decays) 
NeuroBayes is easy to use  
•       Examples and documentation available 
•       Good default values for all options fast start!  
•       Direct interface to TMVA available 
•       Introduction into root planned 
•       To use from C,C++, Fortran, Python etc. 
•       Two code generators available   
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<phi-t> NeuroBayes® 
> is based on neural 2nd generation algorithms,                
   Bayesian regularisation, 
   optimised preprocessing with transformations     
   and decorrelation of input variables and 
   linear correlation to output.  
> learns extremely fast due to 2nd order methods and  
   0-iteration mode 
> is extremly robust against outliers  
> is immune against learning by heart statistical noise  
> tells you if there is nothing relevant to be learned 
> delivers sensible prognoses already with small 
statistics 
> has advanced boost and cross validation features 
> is steadily further developed 
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Bayesian Regularisation 
Use Bayesian arguments to regularise network learning: 

Posterior Evidence 

Likelihood Prior 

Learn only statistically relevant information, suppress statistical noise 
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Conditional probability densities  
in particle physics 
What is the probability density  
of the true B momentum  
in this semileptonic B candidate event  
taken with the CDF II detector  

with these n tracks with those momenta and 
rapidities in the hemisphere,   
which are forming this secondary vertex 
with this decay length and probability, this  
invariant mass and transverse momentum, 
this lepton information, this missing 
transverse momentum, this difference in Phi 
and Theta between momentum sum and 
vertex topology, etc pp 
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Even faster with 0-iteration mode 
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input variables 
ordered by relevance 
(standard deviations 
of additional information) 
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Visualisation of single input-variables 
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Visualisation of correlation matrix 

Variable 1: Training target 
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Visualisation of network performance 

Purity vs. efficiency 

Signal-effiziency vs.  
total efficiency 
(Lift chart) 
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Visualisation of NeuroBayes network topology 

Michael Feindt        Neural Networks and NeuroBayes        School of Statistics 2010  



IEKP, KCETA,KIT  57 Michael Feindt        Neural Networks and NeuroBayes        School of Statistics 2010  

Bayesian ERM/SRM: minimize VC dimension 
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More than 50 diploma and Ph.D. theses…  

from experiments DELPHI, CDF II, AMS, CMS and Belle  
used NeuroBayes® or predecessors very successfully.  

Many of these can be found at  
www.neurobayes.de 

Talks about NeuroBayes® and applications: 
www-ekp.physik.uni-karlsruhe.de/~feindt   Forschung 
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Recent highlights using NeuroBayes (all CDF II): 

Discovery of orbitally excited B**+ und B_s**- mesons 

First observation of particle antiparticle oscillations of B_s- mesons 

Measurement of lifetime difference of short and long lived B_s 
mesons and limits on CP-violating parameters 

Spin-parity determination and most precise mass determination 
of X(3872)  (exotic, not a normal meson) 

Discovery of single top quark production mechanism 

First exclusion of a 160-170 GeV standard model Higgs boson  
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Press (Die Welt,  April 21, 2006)
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Some applications in high energy physics

DELPHI: (mainly predecessors of NeuroBayes in BSAURUS)
Kaon, proton, electron id
Optimisation of resolutions inclusive B- E, , , Q-value
B**, Bs** enrichment 
B fragmentation function
Limit on Bs-mixing
B0-mixing
B- F/B-asymmetry 
B-> wrong sign charm
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Some applications in high energy physics
CDF II: 
Electron ID, muon ID, kaon/proton ID
Optimisation of resonance reconstruction in many 
               channels (X, Y, D, Ds , Ds**, B, Bs, B**,Bs**)
Spin parity analysis of X(3182) 
Inclusion of NB output in likelihood fits
B-tagging for high pt physics (top, Higgs, etc.)
B-Flavour tagging for mixing analyses (new combined
               tagging)
B0, Bs-lifetime, , mixing, CP violation
Discovery of single top quark production  
Higgs search, first high energy Standard Model exclusion
                limits 
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Some applications in high energy physics
CMS: 
B-tagging
single top physics
Higgs searches
Belle: 
Continuum suppression
B full reconstruction
B flavour tagging
KEKB accelerator optimisation

H1:
Calorimeter response optimisation

LHCb, ATLAS
First studies
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More than 50 diploma and Ph.D. theses�… 

from experiments DELPHI, CDF II, AMS, CMS and Belle 
used NeuroBayes® or predecessors very successfully. 

Many of these can be found at 
www.phi-t.de   Wissenschaft  NeuroBayes

Talks about NeuroBayes® and applications:
www-ekp.physik.uni-karlsruhe.de/~feindt   Forschung
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Early examples (DELPHI)   
Hadron Identification
(DELPHI at CERN):

Michael Feindt        Neural Networks and NeuroBayes        School of Statistics 2010 
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Density training, mean (DELPHI, CERN)

Optimised 
reconstruction of  real 
valued quantities: 
extended regression
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Direction of B-mesons (DELPHI)
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Particle identification (soft electrons in CDF II) 
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Hadron collider: No good MC for backgrounds available 
MC for resonance production with different JPC assumptions 

Idea: take background from sidebands in data 
        check that network cannot learn mass  
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Just a few examples…  

NeuroBayes® selection                                                    
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Just a few examples…  First observation of B_s1   
and most precise of B_s2* 

Selection using NeuroBayes®                                                    
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New CDF NeuroBayes B_s flavour tagger  

Without particle ID 

Including particle ID 
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Nice new methods…  
Training with weighted events (e.g for JPC-determination) 

Data-only training with sideband subtraction (i.e. negative 
weights) and sPlot 

Construction of weights for MC phase space events such 
that they are distributed like real data 

Interpretation of NeuroBayes output as Bayesian a 
posteriori probability allows to avoid cuts on output 
variable but instead 
-- inclusion into likelihood-fits (B-mixing, CP-violation) 
-- usage with sPlot to produce “background free“ plots  

Research on finding signals in data without having good 
background model 
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Hadron collider: Fast resonance S/B optimisation without MC: 

Idea: Training with background subtraction 
         Signal:  Peak region weight 1 
                     Sideband region with weight -1 
         Background: Sideband region with weight 1 

works very well! 

also for Y(2S) 
and Y(3S) ! 
Although just  
trained on Y(1S) 
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Example for data-only training (on1.resonance) 
(scan through cuts on network output) 
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also works on J/ψ (small effect due to already good S/B) 

NeuroBayes muon identification: ψ(2S) signal (CDF II)  

Michael Feindt        Neural Networks and NeuroBayes        School of Statistics 2010  

Massive background 
rejection without 
signal loss 
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Cut on J/ψ network  
(distinguishes a  
resonance  
decaying into  
two muons  
from all the rest   
(non-muons,  
combinatorics)   

Low mass µµ resonances (CDF II) 

Kl      Ks              ω           φ 

reject 
accept 
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NeuroBayes Bs to J/ψ Φ selection without MC  (CDF II) 

soft preselection,  
input to first  
NeuroBayes training 

soft cut on net 1,  
input to second  
NeuroBayes training 

cut on net 2  

all data  
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NeuroBayes Bs to J/ψ Φ selection without MC  (CDF II) 

Significance               S/B 

# Signal        #Background 

N_signal = 757.4+-28.7,  
mass 5366.6 +- 0.4 MeV  
lifetime 432.3 +- 17.6 mu 

no lifetime bias by 
input variables  
or NeuroBayes  

NNout 

NNout 
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Making MC for hadronic background without specific model: 
Multidimensional correlated regression using NeuroBayes  

Use data in non-resonance region as signal 
Use phase space MC as background 

Train NeuroBayes network. 
NN output O is Bayesian a posteriori probability that event stems 
from signal (i.e. data distribution) rather than phase space MC: 
            O=P(S) with P(S)+P(B)=1 

Calculate weight  W= P(S)/P(B) = O/(1-O) 

Phase space MC events with this weight W look like data! 
MC modelling of complicated background is possible! 
Opens new roads for likelihood fits  
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Some kinematical variable 
distributions  
(CDF II J/ψ π+π- selection)  

Black: real data  
Red: weighted phase space MC  
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Belle B-factory 
running very successfully  
since 2000. 

KIT joined Belle 
Collaboration in 2008 
and introduced 
NeuroBayes. 

NeuroBayes enhances efficiency of flavour tagging  
calibration reaction  B-> D* l ν by 71% at same purity     
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Belle: Full reconstruction of B mesons in >1000 decay chains. 
Hierarchical system with > 100 NeuroBayes networks, fully automatic. 
Preliminary gain about factor 2 compared to classical algorithm. 
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Belle: Non-BB- continuum-  
suppression for reconstruction  

of a rare B decay mode     

Comparison with 
TMVA algorithms 
shows advantage 
of NB  
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First application in LHCb:   Λ baryon selection. 

Michael Feindt        Neural Networks and NeuroBayes        School of Statistics 2010  

standard cuts 

soft NB selection hard NB selection 
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Bindings and Licenses  
NeuroBayes® is commercial software belonging to Phi-T GmbH. 
License files needed.  
Special rates for public research.  
Essentially free for high energy physics research. 

NeuroBayes is nowunderway to become an officially supported CERN 
tool. It can be found at  
/afs/cern.ch/sw/lcg/external/neurobayes/10.4    

NeuroBayes core code written in Fortran.   
Libraries for many platforms (Linux, Windows, …) available.  
Bindings exist for C++, C, Fortran, java, lisp, python, etc.  

Two code generators for easy usage exist. 
New: Interface to root-TMVA available (classification only). 
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C++ NeuroBayes Teacher code fragment (1) 
#include "NeuroBayesTeacher.hh“ 

//create NeuroBayes instance 
  NeuroBayesTeacher* nb = NeuroBayesTeacher::Instance(); 
  const int  nvar = 14;     //number of input variables 

  nb->NB_DEF_NODE1(nvar+1);       // nodes in input layer  
  nb->NB_DEF_NODE2(nvar);           // nodes in hidden layer  
  nb->NB_DEF_NODE3(1);                // nodes in output layer 
  nb->NB_DEF_TASK("CLA");          // binominal classification           
  nb->NB_DEF_ITER(10);                  // number of training iterations 

  nb->SetOutputFile("BsDsPiKSK_expert.nb");       // expertise file  
  nb->SetRootFile("BsDsPiKSK_expert.root");        // histogram file  
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C++ NeuroBayes Teacher code fragment (2) 
// in training event loop  
      nb->SetWeight(1.0);  //set weight of event 
      // set Target 
      nb->SetTarget(0.0) ; // set Target, this event is BACKGROUND, 
                                         // else set to 1. 

    InputArray[0] = GetValue(back,"BsPi.Pt");     // define input variables 
    InputArray[1] = TMath::Abs(GetValue(back,"Bs.D0")); 
... 
    nb->SetNextInput(nvar,InputArray); 
//end of event loop 

nb->TrainNet();         //perform training 

Many options existing, but this simple code usually already gives very good results. 
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C++ NeuroBayes expert code fragment 

#include "Expert.hh" 
... 
    Expert* nb = new Expert("../train/BsDsPiKSK_expert.nb",-2); 
... 
    InputArray[0] = GetValue(signal,"BsPi.Pt"); 
    InputArray[1] = TMath::Abs(GetValue(signal,"Bs.D0")); 
... 
    Netout = nb->nb_expert(InputArray); 
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Documentation 
Basics: 
M. Feindt, A Neural Bayesian Estimator for Conditional Probability 
Densities, E-preprint-archive  physics 0402093  

M. Feindt, U. Kerzel, The NeuroBayes Neural Network Package, 
NIM A 559(2006) 190 

Web Sites: 
www.phi-t.de (Company web site, German & English) 
www.neurobayes.de (English site on physics results with NeuroBayes & 
all diploma and PhD theses using NeuroBayes, talks, Manuals, FAQ and 
discussion forum) 
www-ekp.physik.uni-karlsruhe.de/~feindt (some NeuroBayes talks can be 
found here under -> Forschung) 

Michael Feindt        Neural Networks and NeuroBayes        School of Statistics 2010  
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Summary 
Neural networks are flexible and versatile multivariate tools. 
However, some problems are known (step size dependence, long CPU time, 
possibility of overtraining) 
All these problems are overcome in NeuroBayes.  
NeuroBayes is meanwhile much more than a neural network.  
Easy to use 
Robust 
Fast to ultra-fast 
Produces only small calibration files (expertises) 
Finds complicated multidimensional relationships with high probability 
Generalises very well 
Award winning performance 
Steadily further developed professionally  
(e.g. recent development  n-dimensional probability densities in time O(n)) 

Use it and improve your analysis!  
Knowledge important also outside physics (see talk this night).  

Michael Feindt        Neural Networks and NeuroBayes        School of Statistics 2010  


