
Use NVidia HPC SDK on MUST

Pierre Aubert



School computing example

Gray Scott reaction (a chemistry game of life)
(for CNRS 2023 Computing School)

Pierre Aubert, Use NVidia HPC SDK on MUST 2



School computing example

Gray Scott reaction (a chemistry game of life)
(for CNRS 2023 Computing School)

U + 2V −→ 3V

V −→ P

Pierre Aubert, Use NVidia HPC SDK on MUST 2



School computing example

Gray Scott reaction (a chemistry game of life)
(for CNRS 2023 Computing School)

U + 2V −→ 3V

V −→ PComputing :

∂u

∂t
= ru∇2u − uv 2 + fr × (1− u)

∂v

∂t
= rv∇2v + uv 2 − (fr − kr )× v

I u and v are concentration of product U and V

I ru and rv diffusion rate of U and V

I kr (Kill Rate), conversion rate from V to P

I fr (Feed Rate), speed of process which feed U and kills V and P

I ∇2u and ∇2v are différence of space concentration between
current cell and its neighbours

Pierre Aubert, Use NVidia HPC SDK on MUST 2



School computing example

Gray Scott reaction (a chemistry game of life)
(for CNRS 2023 Computing School)

U + 2V −→ 3V

V −→ PComputing :

∂u

∂t
= ru∇2u − uv 2 + fr × (1− u)

∂v

∂t
= rv∇2v + uv 2 − (fr − kr )× v

I u and v are concentration of product U and V

I ru and rv diffusion rate of U and V

I kr (Kill Rate), conversion rate from V to P

I fr (Feed Rate), speed of process which feed U and kills V and P

I ∇2u and ∇2v are différence of space concentration between
current cell and its neighbours

I Easy to understand

I Not so easy for the compiler

I Possibility of high speed up

Pierre Aubert, Use NVidia HPC SDK on MUST 2



Computation exercices

I Compute 1000× 34 = 34 000 images 1920× 1080 float, store 1000 in HDF5 file (8.3 GB).

I Evaluate full computation with time

I Use any tool for unit performance tests

I Converter from HDF5 to png is provided

I Any optimisation trick can be shared (for example a really efficient auto-vectorized implementation)

Pierre Aubert, Use NVidia HPC SDK on MUST 3



Computation exercices

I Compute 1000× 34 = 34 000 images 1920× 1080 float, store 1000 in HDF5 file (8.3 GB).

I Evaluate full computation with time

I Use any tool for unit performance tests

I Converter from HDF5 to png is provided

I Any optimisation trick can be shared (for example a really efficient auto-vectorized implementation)

For C++20 lecture https://lappweb.in2p3.fr/~paubert/PERFORMANCE_WITH_STENCIL/index.html

I 2h 43min 30s : -O3 single-thread

I 59min 21s : naive intrinsics single-thread, AVX2

I 9min 49s : intrinsics per block single-thread, AVX2

I 6min 41s : intrinsics per block (AVX2, 8 threads)

For Cuda Quadro M2200 (1024 cores, 4 GB Mem) :

I 4min 48s : implementation with temporary)

I 6min 48s : implementation without temporary)

Pierre Aubert, Use NVidia HPC SDK on MUST 3

https://lappweb.in2p3.fr/~paubert/PERFORMANCE_WITH_STENCIL/index.html


Computation exercices

I Compute 1000× 34 = 34 000 images 1920× 1080 float, store 1000 in HDF5 file (8.3 GB).

I Evaluate full computation with time

I Use any tool for unit performance tests

I Converter from HDF5 to png is provided

I Any optimisation trick can be shared (for example a really efficient auto-vectorized implementation)

For C++20 lecture https://lappweb.in2p3.fr/~paubert/PERFORMANCE_WITH_STENCIL/index.html

I 2h 43min 30s : -O3 single-thread

I 59min 21s : naive intrinsics single-thread, AVX2

I 9min 49s : intrinsics per block single-thread, AVX2

I 6min 41s : intrinsics per block (AVX2, 8 threads)

For Cuda Quadro M2200 (1024 cores, 4 GB Mem) :

I 4min 48s : implementation with temporary)

I 6min 48s : implementation without temporary)

To get same results as C++20 lecture :

I diffusion rate : ru = 0.1 and rv = 0.05

I Kill Rate : kr = 0.054

I Feed Rate : fr = 0.014

I dt = 1

∇2 =

 1 1 1
1 1 1
1 1 1



Pierre Aubert, Use NVidia HPC SDK on MUST 3

https://lappweb.in2p3.fr/~paubert/PERFORMANCE_WITH_STENCIL/index.html


GPU MUST

K80 P6000 T4 V100 A100 3G.20GB

TFlops (float) 8.73 (boost) 12.6 8.1 14 19.5 9.75
Memory (GB) 11.441 (24) 24 15 16 40 20

Nb Cuda Cores 2496 (4992) 3840 2560 5120 6912 2688
Clock rate (GHz) 0.824 1.645 1.590 1.380 1.410 1.410

Generation 3.7 6.1 7.5 7.0 8.0 8.0

Pierre Aubert, Use NVidia HPC SDK on MUST 4



Computation 1 000
I/O

× 34 = 34 000 images

Result with 100 tests per GPU
With temporary Without temporary

Pierre Aubert, Use NVidia HPC SDK on MUST 5



Detail computation 1 000
I/O

× 34 = 34 000 images

Started :
15/02/2022
11:46:39

A100 3G.20GB

V100 P6000 K80

Pierre Aubert, Use NVidia HPC SDK on MUST 6



Computation 5
I/O

× 68 000 = 340 000 images

Result with 100 tests per GPU
With temporary Without temporary

Pierre Aubert, Use NVidia HPC SDK on MUST 7



Detail computation 5
I/O

× 68 000 = 340 000 images

Started :
16/02/2022
21:51:57

A100 3G.20GB

V100 P6000

Pierre Aubert, Use NVidia HPC SDK on MUST 8



Computation 5
I/O

× 680 000 = 3 400 000 images

Result with 100 tests per GPU
With temporary

10min

52min

15min

1h23min

7h34min

24min

Without temporary

10min

52min

15min

1h23min

7h34min

24min

Pierre Aubert, Use NVidia HPC SDK on MUST 9



Detail computation 5
I/O

× 680 000 = 3 400 000 images

Started :
18/02/2022
11:39:39

A100 3G.20GB

V100 P6000

Pierre Aubert, Use NVidia HPC SDK on MUST 10



Graphana perf A100 for 3 400 000 images

Pierre Aubert, Use NVidia HPC SDK on MUST 11



Graphana perf V100 for 3 400 000 images

Pierre Aubert, Use NVidia HPC SDK on MUST 12



Graphana perf P6000 for 3 400 000 images

Pierre Aubert, Use NVidia HPC SDK on MUST 13



Perf VS nb threads for 340 000 images

Pierre Aubert, Use NVidia HPC SDK on MUST 14



NVidia HPC SDK introduction

Pierre Aubert, Use NVidia HPC SDK on MUST 15



GPU MUST and HPC SDK

Use directly C++17 to use GPU with NVC++ :

I Only for compute capabilities ≥ 6.0

I Can specify only one compute capability at compilation time

I Only for C++17 (working with G++-9 or newer)

I Parallelism only with TBB 2018 or newer (not on CentOS 7)

Pierre Aubert, Use NVidia HPC SDK on MUST 16



Hadamard Product with nvc++ (std::par cc60)

Full elapsed time [s] Elapsed time per element [ns]

Pierre Aubert, Use NVidia HPC SDK on MUST 17



Hadamard Product nvc++ (std::par unseq cc optimal)

Full elapsed time [s] Elapsed time per element [ns]

Pierre Aubert, Use NVidia HPC SDK on MUST 18



Graphana V100 for Hadamard nvc++

Pierre Aubert, Use NVidia HPC SDK on MUST 19



Graphana perf T4

Pierre Aubert, Use NVidia HPC SDK on MUST 20



Conclusion

I Good performances on GPU
I With nvcc (CUDA)
I With nvc++

I HPC SDK installed on MUST
I Compiler nvc++ powerful and easy to use

I No explicit linking
I No GPU Targeting (or with CUDA VISIBLE DEVICE)

I Warning about industrial software
I Will to drive for update
I Old GPU become obsolete :

I nvc++ : compute capabilities ≥ 6 (no K80)
I nvcc : compute capabilities ≥ 3.5

I Need to save binaries to ensure long usability of GPU

Pierre Aubert, Use NVidia HPC SDK on MUST 21


