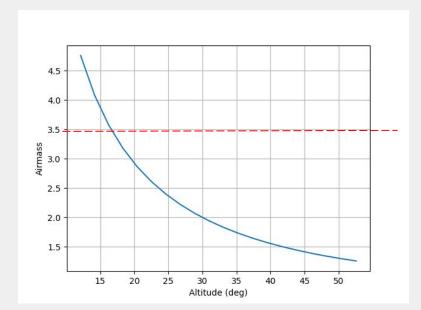

GW plug-in to AstroColibri: a prototype?

 $\bullet \bullet \bullet$

H. Ashkar, M. Seglar-Arroyo, D. Turpin 1st Astro-COLIBRI workshop - Sciathlon 30 September 2022

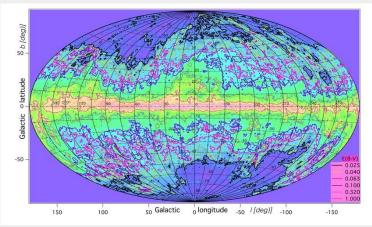
Main idea:


Visibility Plot per tile

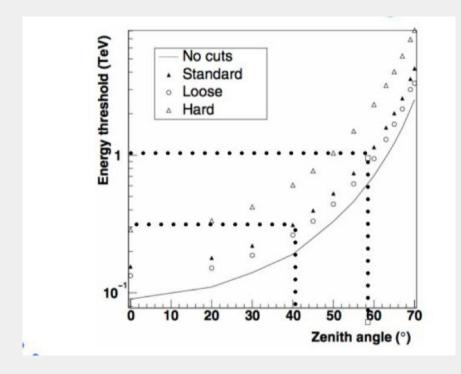
Ideas for a prototype

- In astro-COLIBRI:
 - Input: fill the telescope info (telescope_name, FoV_x (degree), FoV_y (degree), FoV_style (square or circle), diameter (meter))
 - Output: skymap plot -> show tiles and a table. One would be able to click on tiles and show (proba
 of hosting the event, E(B-V), airmass, visibility plot for the tile)
- For the scheduler:
 - Use gw scheduler used in IACTs+consider the optical cases: gwemopt scheduler used in GRANDMA and Skyportal <u>https://github.com/mcoughlin/gwemopt/tree/master/gwemopt</u>

To take into consideration for optical case: airmass

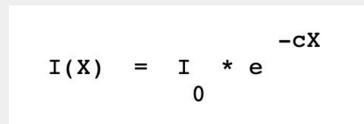

- Airmass: to be calculated (estimation based on Pickering2002. 2 lines of Python to be updated later)
 - Airmass = 1/np.sin((elevation+244/(165+47*elevation**1.1))*math.pi/180)

Cut in zenith angle from the airmass? + Reweighting once scheduling is done? as first approach


To take into consideration for optical case: galactic extinction

- Galactic extintion: https://ned.ipac.caltech.edu/extinction_calculator (any API to get those info automatically ?
 - Use E(B-V) parameter
 - It goes from 0 to >>>20
 - -> <u>https://github.com/ruizca/gdpyc</u> -> to get the gal. extinction E(B-V) parameter

About the E(B-V) and A₂ conversion -> https://spex-xray.github.io/spex-help/models/ebv.html


IACT: energy threshold dependence on zenith angle

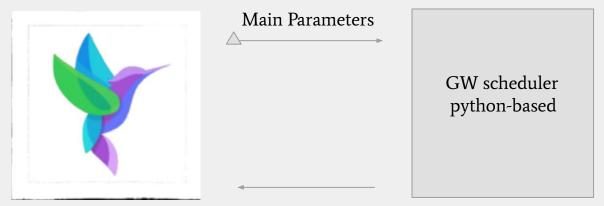
A posteriori weighing probability covered probability

- Optical telescopes: Airmass and Extinction
- IACTs: integrated flux

 $P = PGW * (1 - 0.2(1 - I(x)/I_0))$

DEMO

Personalize 😌 😲 访



Personalize 😌 😲 访

Main idea:

.json file Times RA Dec Probilities Zenith Angle \bigtriangleup

Parameters needed in the Astrocolibri gui

[observatory] name = 'LST' Lat = 28.75 Lon = 17.5 Height = 2200

[visibility] gSunDown = -18 HorizonSun = -18:00:00 gMoonDown = -0.5 HorizonMoon = -00:30:00 gMoonGrey = 65 gMoonPhase = 60 MoonSourceSeparation = 30 MaxMoonSourceSeparation = 145 [operations] max_zenith = 70 FOV = 2.0 MaxRuns = 20 MaxNights = 1 Duration = 20 MinDuration = 10 UseGreytime = False

[tiling] Online = False MinimumProbCutForCatalogue=0.01 MinProbCut = 0.02 doplot=True SecondRound = False FulFillReq_Percentage=0.75 PercentCoverage = 0.90 ReducedNside = 64 HRnside = 128 Mangrove = False

one search

Personalize 😌 ; 访

search

Personalize 😌 ; 访

one search

Personalize 😌 😲 🚺

Personalize 😫 ? 🛈



ne search

Personalize 😌 ; 访

one search

Personalize 😌 😲 访

Missing points

- Details of the plug to astroCOLIBRI
- Implement squared FOV

Back-up