EHT(++) in the era of multi-messenger transients

3C273 (Jester++2006): Blue: X-rays (Chandra), Green: Optical (HST) , Yellow: Optical & Peak Radio, Red: Radio (VLA)

Sera Markoff (API/GRAPPA, University of Amsterdam)

Co-coordinator: EHT Multiwavelength Science WG & ngEHT Transients Science WG + Member CTAC + several current/former members of the 'jetsetters' group @ U Amsterdam (K. Chatterjee, D. v. Eijnatten, C. Hesp, M. Liska, M. Lucchini, W. Mulaudzi, G. Musoke, R. Plotkin, L. Sosapanta Salas, D.-S. Yoon) + J. Davelaar, S. Phillipov, B. Ripperda, S. Tchekhovskoy, Z. Younsi

For all high-energy classes, "core problem" is macroscopic ⇔ microscopic coupling

How does the Event Horizon Telescope (EHT) factor in??

M87* ring ≈ 42 µas

Sgr A* ring≈ 52 µas

EHTC M87* paper I (2019); Sgr A* paper I (2022)

How does the Event Horizon Telescope (EHT) factor in??

ring≈ 52 µas

EHTC M87* paper I (2019); Sgr A* paper I (2022)

The Event Horizon Telescope (EHT) Collaboration is comprised of >300 members from >80 institutes....

GRMHD simulations + GR ray-tracing **w** synthetic EHT images

(21216000x800x11eesolutions, Chatteries, Liskia, Tablekh 203koy & SM 2018, Using 51, AMR:, Lieka Khatteries STableboysko y 5142019?)

GRMHD simulations + GR ray-tracing **w** synthetic EHT images

(21216000x800x11eesolutions, Chatteries, Itkis, Ichekhovskov & SM2018, Using H, AMR:, Iteka Khatskose STchebboyskovy H2019)

GRMHD simulations + GR ray-tracing **synthetic** EHT images

(21216000x800x11eesolutions, Chatteries, dikka, Tahekhovskoy & SM2018, using 51, AMR:, Lieka Khatskripe STabelaboyskov + 2019?)

Degeneracy introduced by models for electron microphysics

MAD a = 0.94

(Mizuno, Fromm, Younsi++21)

EHT Collaboration 2019, Papers V-VI

Degeneracy introduced by models for electron microphysics

MAD a = 0.94

(Mizuno, Fromm, Younsi++21)

EHT Collaboration 2019, Papers V-VI

Degeneracy ir

MAD a = 0.94

Dom		/. EL	JT /						01	0)	Table	2 (con	tinued))		
гар	erv) Doio			012	atior	1 2	$flux^1$	${a_*}^2$	$R_{\rm high}{}^3$	AIS^4	ϵ^5	$L_{\rm X}^{6}$	$P_{\rm jet}{}^7$	
		Table 2	2. Reje	ction 1	able			_	MAD	-0.5	40	Pass	Pass	Pass	Pass	Pass
flux ¹	a., 2	$R_{\rm high}^3$	AIS^4	ϵ^5	Lx^6	$P_{\rm int}^7$			MAD	-0.5	80	Pass	Pass	Pass	Pass	Pass
SANE	0.04	1	Fail	Decc	Daga	Page	Fail		MAD	-0.5	160	Pass	Pass	Pass	Pass	Pass
SANE	-0.94	10	Pass	Pass	Pass	Pass	Page Page		MAD	0	1	Pass	Fail	Pass	Fail	Fail
SANE	-0.94	20	Pass	Pass	Pass	Pass	Pass		MAD	0	10	Pass	Pass	Pass	Fail	Fail
SANE	-0.94	20 40	Dass	Dass	Page	Dass	Doce		MAD	0	20	Pass	Pass	Pass	Fail	Fail
SANE	-0.94	40 80	Pass	Pass	Pass	Pass	Pass		MAD	0	40	Pass	Pass	Pass	Fail	Fail
SANE	-0.94	160	Fail	Pass	Pass	Pass	Fass		MAD	0	80	Pass	Pass	Pass	Fail	Fail
SANE	-0.54	100	Pass	Pass	Fail	Fail	Fail		MAD	0	160	Pass	Pass	Pass	Fail	Fail
SANE	-0.5	10	Pass	Pass	Fail	Fail	Fail		MAD	+0.5	1	Pass	Fail	Pass	Fail	Fail
SANE	-0.5	20	Pass	Pass	Pass	Fail	Fail		MAD	+0.5	10	Pass	Pass	Pass	Pass	Pass
SANE	-0.5	20 40	Pass	Pass	Pass	Fail	Fail		MAD	+0.5	20	Pass	Pass	Pass	Pass	Pass
SANE	-0.5	40 80	I ass Fail	Pass	Pass	Fail	Fail		MAD	+0.5	40	Pass	Pass	Pass	Pass	Pass
SANE	-0.5	160	Pass	Pass	Pass	Fail	Fail		MAD	+0.5	80	Pass	Pass	Pass	Pass	Pass
SANE	-0.5	100	Pass	Pass	Pass	Fail	Fail		MAD	+0.5	160	Pass	Pass	Pass	Pass	\mathbf{Pass}
SANE	0	10	Pass	Pass	Pass	Fail	Fail		MAD	+0.94	1	Pass	Fail	Fail	Pass	Fail
SANE	0	20	Pass	Pass	I ass Fail	Fail	Fail		MAD	+0.94	10	Pass	Fail	Pass	Pass	Fail
SANE	0	40	Pass	Pass	Pass	Fail	Fail		MAD	+0.94	20	Pass	Pass	Pass	Pass	Pass
SANE	0	40 80	Pass	Pass	Pass	Fail	Fail		MAD	+0.94	40	Pass	Pass	Pass	Pass	Pass
SANE	0	160	Pass	Pass	Pass	Fail	Fail		MAD	+0.94	80	Pass	Pass	Pass	Pass	Pass
SANE	+0.5	100	Pass	Pass	Pass	Fail	Fail	_	MAD	+0.94	160	Pass	Pass	Pass	Pass	Pass
SANE	+0.5	10	Pass	Pass	Pass	Fail	Fail	1	flux: ne	et magne	tic flux o	on the b	lack ho	ole (MA	D, SA	NE).
SANE	+0.5	20	Pass	Pass	Pass	Fail	Fail	2	a_* : dim	ensionle	ss black	hole spi	n.			
SANE	+0.5	20 40	Pass	Pass	Pass	Fail	Fail	3	P	alactron	tomporat		amotor	500.00	nution	(8)
SANE	+0.5	80	Pass	Pass	Pass	Fail	Fail	4	n _{high} : e	-		ure par	ameter	, see et	quation	(0).
SANE	+0.5	160	Pass	Pass	Pass	Fail	Fail		Average $if n < 0$	e Image	Scoring (Section	(THEMIS	s-AIS),	models	s are re	jected
SANE	+0.94	1	Pass	Fail	Pass	Fail	Fail	5	$p \ge 0$.01, see				1.1		(1
SANE	+0.94	10	Pass	Fail	Pass	Fail	Fail	0	ϵ : radia the corr	tive effic respondi	ng thin d	odels ai lisk effi	re rejec ciency.	ted if ϵ see Sec	is large	er than
SANE	+0.94	20	Pass	Pass	Pass	Fail	Fail	6					ro roioc	tod if	$I \rightarrow 10$	-2σ
SANE	+0.94	40	Pass	Pass	Pass	Fail	Fail		$> 4.4 \times$	$10^{40} \mathrm{erg}$	sec^{-1} . S	bee Sect	ion 6.2		$L_{\rm X}/10$	
SANE	+0.94	80	Pass	Pass	Pass	Pass	Pass	7	P iot	nower	models	ro rojo	eted if	$P_{\rm eff} < 1$	0^{42} or σ	sec^{-1}
SANE	+0.94	160	Pass	Pass	Pass	Pass	Pass		see Sect	tion 6.3 .	models a	ite tejet	lieu II I	ı jet _ 」	to erg	sec ,
MAD	-0.94	1	Fail	Fail	Pass	Pass	Fail									
MAD	-0.94	10	Fail	Pass	Pass	Pass	Fail									
MAD	-0.94	20	Fail	Pass	Pass	Pass	Fail									
MAD	-0.94	40	Fail	Pass	Pass	Pass	Fail				7 D	ISCUS	SION			
MAD	-0.94	80	Fail	Pass	Pass	Pass	Fail		We he	int	n D	the EU	T2017	data	naine	lim
MAD	-0.94	160	Fail	Pass	Pass	Pass	Fail	it	vve na ed libr	ary of m	preted odels w	ith atte	12017 endent	limite	using a tions	i nm- Many
MAD	-0.5	1	Pass	Fail	Pass	Fail	Fail	0	f the li	mitatior	is stem f	from th	e GRM	/HD n	nodel.	which
MAD	-0.5	10	Pass	Pass	Pass	Fail	Fail	tı	reats tl	he plasn	na as ai	n ideal	fluid g	govern	ed by	equa-
MAD	-0.5	20	Pass	Pass	Pass	Pass	Pass	ti	ions tha	at encod	le conser	vation	laws fo	or part	icle nu	mber,

microphysics

momentum, and energy. The eDF, in particular, is de-

19, Papers V-VI

vations

		(Paper)/ EUT Callaboration							201	Table 2 (continued)											
	Dogonoracyir	(гаре	er v		P Rojoc			610	ation	$flux^1$	a_*^2	$R_{\rm high}{}^3$	AIS^4	ϵ^5	$L_{\rm X}^{6}$	${P_{\rm jet}}^7$		mi	ron		
				Table A	2. nejec	210111	able			MAD	-0.5	40	Pass	Pass	Pass	Pass	Pass		ΙΟΡΙ		
		$flux^1$	$a_{*}{}^{2}$	$R_{\rm high}{}^3$	AIS^4	ϵ^5	$L_{\rm X}^{6}$	$P_{\rm iet}^{7}$		MAD	-0.5	80	Pass	Pass	Pass	Pass	Pass				
		SANE	-0.94	1	Fail	Pass	Pass	Pass	Fail	MAD	-0.5	160	Pass	Pass	Pass	Pass	\mathbf{Pass}				
	MAD $a = 0.94$	SANE	-0.94	10	Pass	Pass	Pass	Pass	Pass	MAD	0	1	Pass	Fail	Pass	Fail	Fail				
	log ₁₀ β	SANE	-0.94	20	Pass	Pass	Pass	Pass	Pass	MAD	0	10	Pass	Pass	Pass	Fail	Fail				
	-3 -2 -1 0 1 2 3 -3	SANE	-0.94	40	Pass	Pass	Pass	Pass	Pass	MAD	0	20	Pass	Pass	Pass	Fail	Fail			and the	
		SANE	-0.94	80	Pass	Pass	Pass	Pass	Pass	MAD	0	40	Pass	Pass	Pass	Fail	Fail	.S			
		SANE	-0.94	160	Fail	Pass	Pass	Pass	Fail	MAD	0	80	Pass	Pass	Pass	Fail	Fail	= 10	M	igl	$_{\rm h}=10$
100 -		SANE	-0.5	1	Pass	Pass	Fail	Fail	Fail	MAD	0	160	Pass	Pass	Pass	Fail	Fail				
	Rhigh	SANE	-0.5	10	Pass	Pass	Fail	Fail	Fail	MAD	+0.5	1	Pass	Fail	Pass	Fail	Fail		aron		
80 -		SANE	-0.5	20	Pass	Pass	Pass	Fail	Fail	MAD	+0.5	10	Pass	Pass	Pass	Paer		+0	0.5		
		SANE	-0.5	40	Pass	Pass	Pass	Fail	Fail	MAD	+0.5	20	Pass	Pass				110			
		SANE	-0.5	80	Fail	Pass	Pass	Fail	Fail	MAD	+0.5	40	Pr			-11				0.	
60 -		SANE	-0.5	160	Pass	Pass	Pass	Fail	Fail	MAD	+0.5										
		SANE	0	1	Pass	Pass	Pass	Fail	Fail	MAT			n				urass in a	att			
		SANE	0	10	Pass	Pass	Pass	Fail	F			$\mathbf{r}(0)$					0				
40 -		SANE	0	20	Pass	Pass	Fail			+(2	5				
		SANE	0	40	Pass	P	Pass		12				9.								
- 02		SANE	0	00		Pass	-141									Page	Daga				
20		SANE		1.60		1				~			51-		Desa	Pass	Pass				
								Bail		0				rass	Pass	Pass	Pass	untiona			
0 -			0			Pass			$\mathbf{2N}$	0		mux (on the b	lack ho	ole (MA	D, SAN	ΙE).	vations			
		21		20	-Pass					alli	iensionle	ess black	hole spi	n.							
	600			40	0	15				${}^3R_{ m high}$: e	electron	tempera	ture par	ameter	, see eq	uation	(8).				
-20 -				12	C			rail	Fail	4 Average	e Image	Scoring	(Themis	s-AIS),	models	are rej	ected				
						200	Pass	Fail	Fail	if $p \leq 0$	0.01, see	Section 4	$\dot{4}$ and Ta	able 1.		0					
					Pass	Fail	Pass	Fail	Fail	5ϵ : radia	ative effic	ciency, m	nodels ar	re reject	ted if ϵ	is large	r than				
	5100 11101		1001	10	Pass	Fail	Pass	Fail	Fail	the corr	respondi	ing thin o	disk effic	ciency,	see Sect	sion 6.1					
		JANE	+0.94	20	Pass	Pass	Pass	Fail	Fail	${}^{6}L_{\rm X}: {\rm X-1}$	ray lumi	nosity; n	nodels a	re rejec	ted if \langle	$L_{\rm X}\rangle 10^{-}$	2σ				
	a 83.	SANE	+0.94	40	Pass	Pass	Pass	Fail	Fail	> 4.4 ×	$10^{40} \mathrm{erg}$	$g \sec^{-1}$. S	See Secti	ion 6.2 .							
	CCO	SANE	+0.94	80	Pass	Pass	Pass	Pass	Pass	$^7P_{ m jet}$: jet	t power,	models a	are rejec	cted if I	$P_{\rm jet} \leq 1$	$0^{42} \operatorname{erg} s$	\sec^{-1} ,				
Ę		SANE	+0.94	160	Pass	Pass	Pass	Pass	Pass	see Sec	tion 6.3 .										
-80		MAD	-0.94	1	Fail	Fail	Pass	Pass	Fail												
4		MAD	-0.94	10	Fail	Pass	Pass	Pass	Fail												
100		MAD	-0.94	20	Fail	Pass	Pass	Pass	Fail												
<u> </u>	00 - 80 - 60 - 40 - 20 0 - 2	MAD	-0.94	40	Fail	Pass	Pass	Pass	Fail			7. D	DISCUS	SION							
		MAD	-0.94	80	Fail	Pass	Pass	Pass	Fail	We ha	ave inter	rpreted	the EH	T2017	data ı	using a	lim-				
	rsin(θ)[M]	MAD	-0.94	160	Fail	Pass	Pass	Pass	Fail	ited libr	ary of n	nodels w	with atte	endant	limitat	ions. N	Iany				
		MAD	-0.5	1	Pass	Fail	Pass	Fail	Fail	of the lin	mitation	ns stem :	from th	e GRN	1HD m	odel, w	vhich				
(M	lizuno, Fromm, Younsi++21)	MAD	-0.5	10	Pass	Pass	Pass	Fail	Fail	treats the	ne plasr	na as a: le conce	n ideal	fund g	governe r port:	ed by e	qua- aber	17, Pape			
		MAD	-0.5	20	Pass	Pass	Pass	Pass	Pass	tions that	at encoc	te consei	vation	laws IC	r parti	cie nun	iber,				

momentum, and energy. The eDF, in particular, is de-

Next: simultaneous EHT/VLBI image + multiwavelength modelling

(EHT Multiwavelength Science WG, EHTC, Fermi-LAT, HESS, MAGIC, VERITAS, EAVN, EAVN 2021, ApJL)

Next: simultaneous EHT/VLBI image + multiwavelength modelling

(EHT Multiwavelength Science WG, EHTC, Fermi-LAT, HESS, MAGIC, VERITAS, EAVN, EAVN 2021, ApJL)

Fitting all constraints severely challenges plasma physics-inspired models

(Work in progress by UvA PhD student Wanga Mulaudzi)

 z/r_g

-20-

(Work in progress by UvA PhD student Wanga Mulaudzi)

The new horizon: combined image + SED modelling

Radio to optical SED fitting by Fromm++22

Sgr A*: much better prior information compared to M87*

Roger Penrose

"for the discovery that black hole formation is a robust prediction of the general theory of relativity"

Reinhard Genzel

Andrea Ghez

"for the discovery of a supermassive compact object at the centre of our galaxy"

THE ROYAL SWEDISH ACADEMY OF SCIENCES

Keck Observatory

Sgr A* has exquisite multi-wavelength constraints

X-ray flare from NASA's Chandra X-ray Observatory, + NuSTAR & Swift (space)

Infrared flare from the Keck Observatory + VLT/GRAVITY (ground)

10:38:57.11 UT

T. Do, Keck/UCLA Galactic Center Group

Sgr A* has exquisite multi-wavelength constraints

EHTC + Multiwavelength Partners, Sgr A* Paper II 2022; Wielgus, EHT++2022

EHTC + Multiwavelength Partners, Sgr A* Paper II 2022; Wielgus, EHT++2022

Visualization credit: Ben Prather, University of Illinois at Urbana-Champaign. Image library credit: EHT Theory Working Group, CK Chan. EHTC Sgr A* Paper I, Paper V (2022)

Sgr A*: Over 200 simulations, 1.8 Million images, ~PByte of data!

11 Constraints of 3 types : EHT images + Multi-wavelength + Variability

Visualization credit: Ben Prather, University of Illinois at Urbana-Champaign. Image library credit: EHT Theory Working Group, CK Chan. EHTC Sgr A* Paper I, Paper V (2022)

Sgr A*: Over 200 simulations, 1.8 Million images, ~PByte of data!

 "Best bet models" favour a prograde spin (a~0.5-9.4), lower strongly magnetised accretion flows (similar to M87*?!) is jets??

Visualization credit: Ben Prather, University of Illinois at Urbana-Champaign. Image library credit: EHT Theory Working Group, CK Chan. EHTC Sgr A* Paper I, Paper V (2022)

inclination ($\leq 30^{\circ}$), cool electrons compared to ions, and turbulent,

We now have tools to study sites/mechanisms (not hadronic accel. yet...)

Ripperda, Bacchini & Philippov 2020, resistive 2D GRMHD w/ effective resolution of 12288x6144

(5400x2300x2300) with H-AMR (Liska++ 2019) yields similar results: Ripperda, Liska, Chatterjee, Musoke, Philippov, SM++ 2022

We now have tools to study sites/mechanisms (not hadronic accel. yet...)

Ripperda, Bacchini & Philippov 2020, resistive 2D GRMHD w/ effective resolution of 12288x6144

(5400x2300x2300) with H-AMR (Liska++ 2019) yields similar results: Ripperda, Liska, Chatterjee, Musoke, Philippov, SM++ 2022

Next decade(s): EHT++ + MWL monitoring for many AGN!

Credits: (M87: HST), (Cyg A: Chandra/HST/VLA (Cyg A), (Cen A: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss++(Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray)), (NGC 1265: M. Gendron-Marsolais++; S. Dagnello, NRAO/ AUI/NSF; SDSS),(3C279, EHT),(3C293, Chandra),(Mrk501, Giroletti/VLBA/HO/RO/HALCA),(NGC1068; Kadler/VLBA), (NRAO530, Zhao++/JVLA), (OJ287, Marscher&Jorstad/Chandra/VLA)

(Slide adapted from M. Moscibrodzka)

Next decade(s): EHT++ + MWL monitoring for many AGN!

The ngEHT: Reference Configurations

SMA

JCMT

EHT Sites

230 GHz Spans ~2 weeks Observes ~7 nights/year

SMT

EHT+ngEHT Meeting, Granada, June 22, 2022

The ngEHT: Reference Configurations

EHT Sites ngEHT Sites (Phase 1)

230 + 345 GHz Spans 3+ months Observes 60+ nights/year OVRO

SMA

JCMT

BAJA COSMT

EHT+ngEHT Meeting, Granada, June 22, 2022

The ngEHT: Reference Configurations

EHT Sites ngEHT Sites (Phase 2)

230 + 345 GHz Spans 3+ months Observes 60+ nights/year OVRO

BAJA

SMA

JCMT

° SMT

KP

EHT+ngEHT Meeting, Granada, June 22, 2022

EHT expansion: dynamical movies (example for Sgr A*)

mm-radio (ALMA)

SgrA* with ALMA on 2017 April 7

Credit: I. Marti-Vidal (U Valencia)

NIR (Keck & VLT/Gravity X-ray (Chandra, NuSTAR,

Sgr A* Paper II 2022; Wielgus, EHT++2022

Swift)

T. Do, Keck/UCLA Galactic Center Group

Credit: NASA/CXC/D.Haggard et al.

M87 2018 MWL paper: localising y-ray flares??

- Most significant γ-ray flare since 2010! (tho sampling is not great...)
- Enhanced activity in higher energy bands overall, in core not knots
- Waiting on M87 imaging to know if anything interesting happened in EHT images/core flux
- SED modeling/comparisons with 2017 to come

Cherenkov Telescope Array (CTA): Full N/S sky coverage with unprecedented sensitivity

CTA North ORM La Palma, Spai

> **CTA South** ESO, Chile

10x more sensitive, 3-5x better pointing accuracy, 2.5x larger FoV, and many orders of magnitude better at detecting fast transients!
Largest (open) observatory in the VHE gamma-rays with two sites in both hemispheres for full sky access (~2027)

1 Ke

Understanding = localising!

M87

NRAO/VLA 90cm image

Hess/Magic/Veritas (TeV) angular resolution CTA (TeV) angular resolution

VLA – 1.5 GHz

Understanding = localising!

M87

Sironi, Brown & Narayan 2021

NRAO/VLA 90cm image

Hess/Magic/Veritas (Te), angular reso Parfrey, Philippov & Cerutti 2019, Cringuand, Cerutti + 2020 Cringuand, Cerutti + 2020 Bransgrove, Ripperda & Philippov 2021,

VLA – 1.5 GHz

Thinking ahead to EHT++: A high cadence month in the life of S5 0716+714

- Complex stochastic behavior, requires many samples to resolve (EHT 2017 Sgr A* data is case in point!): weekly over years!
- Different particle acceleration methods predict different variability signatures
- Illustrates the need for agile observing, ToO capabilities, automated/dynamical scheduling
 - ngEHT++ AGN plans should optimise overlap with CTA/optical (with polarisation!) monitoring programs!

(MAGIC collaboration 2018)

The CTA AGN KSP: a decade of intense VHE y-ray monitoring

- Deep exposures: M87 (100 hrs) and Cen A (150 hrs)
- Longterm monitoring: 2-3 sources per AGN class, 15-20 total "prominent" VHE AGN (mostly blazars/radio galaxies/LLAGN), spectra at least weekly for 30 minutes, for ~10 years
- AGN Flares: triggered externally or internally (CTA realtime analysis mode, regular 12min snapshots of ~80 AGN)
- High quality spectra: ~80 sources
- Many of these also potential neutrino sources monitored by eg. MOJAVE

See "Science with CTA" ebook: arXiv:1709.07997

Programme	total N [b]	total S [b]	duration [vr]	observation mode
Гюдганние	lotar in [ii]	iotai o [ii]	ullation [yi]	Observation mode
Long-term monitoring	1110	390	10 †	full array
AGN flares				
snapshots	1200	475	10 *	LSTs
snapshots	138	68	10 *	MSTs (assuming 10 sub-arr
verification ext. trig.	300	150	10 *	LSTs or MST sub-arrays
follow-up of triggers	725	475	10 *	full array
High-quality spectra				
redshift sample	195	135	3	full array
M 87 and Cen A	100	150	3	full array

Science plans: defining the 'golden' MWL-ngEHT sample

(EvenT Horizon and EnviRons=ETHER sample; Ramakrishnan, Nagar++)

Sera VHE sources Notes:

may be filtered, eg, by declination and literature vlbi flux and frequency limits. Check.

- Snu, freq, Res are observed fluxes. Snu is most often peak (not total) flux.
- resolution (Res) is indicative only since original compilations (or NED) often do not
- specify resolution. When Res was not available: VLBA set to 1mas, GMVA to 0.1mas, VLA to 1arcsec
- extrapolated 230GHz flux in the EHT FOV (exflux230) is based on an assumed spectral slope (about -0.4)
- and resolved flux fraction which depends on the resolution of the observed flux.
- source code (last column): 0= directly measured mbh (incl. detailed RM). Else
- estimated mbh: 1=M-sigma 2=M-Lbulge, 3=single-epoch RM, 4=optical luminosity,
- 5=FP-derived sigma (FP-sigma), 6=Blazar compilation (mix)
- nutilde is from Janssen et al eqn 12

Name	Z	ring	ringhi	Dist	Mbh	Mbhhi	S_nu	Freg	Res	exflux230	ra	dec,	nutilde,	230GH;	zflux 23
		micro	micro	Mpc	Msun	Msun	mJy	GHz	arcsec	mJy	deg	deg,	GHz	mJy	arcsec
2MASXJ00135605-185	0.0950	*****	*****	363.5	Inf	Inf	12.0	8.4	0.00100	2.2	3	-18	****	*****	******
WISEJ015239.60+014	0.0800	*****	*****	311.4	Inf	Inf	48.0	8.4	0.00100	8.9	28	1	****	*****	******
TXS0506+056	*****	*****	*****	*****	Inf	Inf	220.0	23.0	0.00100	61.3	77	5	****	640.0	1.00000
1ES0502+675	0.4160	*****	*****	1134.8	Inf	Inf	39.0	15.0	0.00100	9.2	76	67	****	*****	******
PMNJ0816-1311	*****	*****	*****	*****	Inf	Inf	18.0	8.4	0.00100	3.4	124	-13	****	*****	******
PKS0301–243	0.2660	*****	*****	843.8	Inf	Inf	118.0	15.0	0.00100	27.7	45	-24	****	*****	******
1H1914–194	0.1370	*****	*****	499.7	Inf	Inf	164.0	15.0	0.00100	38.5	289	-19	****	*****	******
PKS0521–36	0.0550	*****	*****	220.5	Inf	Inf	297.0	86.0	0.00067	170.8	80	-36	****	6300.0	1.00000
PKS1424+240	*****	*****	*****	*****	Inf	Inf	76.0	23.0	0.00100	21.2	216	23	****	333.0	1.00000
1ES1101-232	0.1860	*****	*****	642.7	Inf	Inf	20.0	8.4	0.00100	3.7	165	-23	****	*****	******
PG1553+113	0.3600	*****	*****	1037.6	Inf	Inf	130.0	15.0	0.00100	30.5	238	11	****	191.0	1.00000
PKS1440-389	*****	*****	*****	*****	Inf	Inf	68.0	8.4	0.00100	12.7	220	-39	****	*****	******
VERJ0521+211	*****	*****	*****	*****	Inf	Inf	193.0	15.0	0.00100	45.3	80	21	****	207.0	1.00000
VERJ0648+152	0.1790	*****	*****	623.2	Inf	Inf	22.0	8.4	0.00100	4.1	102	15	****	*****	******
1RXSJ101015.9-3119	0.1430	*****	*****	518.1	Inf	Inf	18.0	8.4	0.00100	3.4	152	-31	****	*****	******
2MASXJ22500577+382	0.1190	*****	*****	443.0	Inf	Inf	43.0	8.4	0.00100	8.0	342	38	****	*****	******
M87	0.0042	38.44	40.82	16.7	6.15E+09	6.53E+09	700.0	230.0	0.00002	700.0	187	12	188	700.0	0.00002
Mrk501	0.0330	3.24	9.72	135.8	4.22E+09	1.27E+10	159.0	86.0	0.00048	91.4	253	39	759	279.0	1.00000
NGC1275	0.0176	1.42	2.25	70.0	9.55E+08	1.51E+09	430.0	86.0	0.00010	247.2	49	41	2874	8760.0	1.00000
PKS0625-35	0.0562	0.92	1.83	214.3	1.89F+09	3.76E+09	172.0	8.4	0.00100	32.0	96	-35	1592	105.0	1,00000
TC310	0.0188	0.37	0.39	77.8	2.78E+08	2.93E+08	59.0	15.0	0.00100	13.9	49	41	2810	*****	******
1FS2344+514	0.0440	0.37	1.10	178.7	6.31F+08	1.89F+09	96.0	15.0	0.00100	22.5	356	51	3406	*****	*****
1ES0229+200	0.1400	0.36	1.07	509.0	1.74F+09	5.21E+09	29.0	8.4	0.00100	5.4	38	20	1690	*****	*****
1FS1426+428	0.1293	0.30	0.89	475.6	1.35E+09	4.05E+09	21.0	15.0	0.00100	4.9	217	42	1957	*****	*****
0B103	1 8379	0.30	0.05	1739 6	4 37F+09	1 31F+10	298.0	86.0	0 000100	171 3	226	10	10887	411 0	1 00000
BLLac	0 0690	0 10	0.58	272 1	5 01E+08	1 50F+09	2480 0	86.0	0 00024	1425 9	330	42	*****	2720 0	1 00000
1ES0806+524	0.1371	0.17	0.50	500.0	7.94F+08	2.38E+09	71.0	15.0	0.00100	16.7	122	52	6183	*****	******
NBA0530	0.9000	0.13	0.39	1607.0	2.00F+09	5.99F+09	2300.0	23.0	0.00100	641.0	263	-13	****	1070.0	1_00000
PKS1741-038	1 0540	0.13	0.35	1671 4	2 00E+09	5 99E+09	200.0	86.0	0.00100	168 5	265	_3	22758	1736 0	1 00000
PKS2155_304	0 1160	0.12	0.36	1071.4	5 01F+08	1 50F+09	150 0	8 /	0.00024	29.6	205	-30	11220	205 0	1 00000
PKS2005-489	0.1100	0.12	0.30	275 7	3 00F+08	9 27F±08	271 0	220 0	1 000000	108 /	302	_/8	21808	203.0	1 00000
Mrk180	0.0700	0.12	0.33	186 /	1 62E+00	9.27L+00	271.0	15 0	0 00100	10.7	17/	-40	12047	2/1.0	1.00000
1ES0347_121	0.0400	0.05	0.27	630 0	1.02L+00	4.07L+00	19 0	1 8	0.00100	2 7	57	_11	5866	*****	******
H2356_300	0.1654	0.07	0.22	581 5	3 08E+08	1 10E+09	10.0	9.0 Q /	0.00100	2.7	350	-30	6716	*****	******
TYS1055+567	0.1034	0.07	0.21	519 0	3.90L+00	1.19L+09	102 0	15 0	0.00100	24 2	164	-50	17/72	*****	****
1551050+650	0.1452	0.07	0.21	100.2	1 22E+00	3 60E+09	112 0	15.0	0.00100	24.2	200	65	10010	*****	****
TE21222+216	0.0470	0.07	0.20	1162 2	7 /1E+00	2 22E+00	112.0	26.0	0.00100	20.5	195	21	_0955	100 0	1 00000
	0.4330	0.07	0.20	107.0	1 26E+00	2.22L+09	494.0	22 0	0.00017	110 0	220	-24	-2022	1620 0	1 00000
	0.0490	0.07	0.20	19/19	2 005-00	1 10E+00	430.0	15 0	0.00100	119.0	105	-24	***** 1/515		
PG1210+304	0.1030	0.07	0.20	1205 7	5.90L+00	1.192+09	1000 0	220 0	0.00100	1000 0	107	50	14313	****** 1000 0	^~~~~~~~~
SC279 Mrk401	0.0002	0.00	0.19	127 0	6 90E+00	0 16E+09	160.0	230.0	0.00002	07.2	194	20	****	1/1 0	1 000002
NCC1069	0.0310	0.00	0.07	12/.9	0.000-07	0.100+00	109.0	4 0	10 500013	9/.2	100	20	****	141.0	
	0.0030	0.00	0.00	272 1	0.39E+00	0.03E+00	1900.0	4.0	10.50000	2 0	40	22	***** 0010	*****	
1550414+000	0.0090	0.05	0.10	2/2.1	2 625-00	4.24E+00	21.0	0.4	0.00100	5.9	67	-52	12024	*****	
1E50414+009	0.2870	0.04	0.13	000 0	3.03E+00	1.09E+09	202.0	0.4 15 0	0.00100	5.0 03.5	04	12	13924	*****	******
3C00A	0.3400	0.04	0.12	999.8	3.98E+08	1.19E+09	398.0	12.0	0.00100	93.5	30	43	****	*****	******
6C070609+591309	0.1250	0.04	0.12	402.2	1.82E+08	5.40E+08	28.0	8.4	0.00100	2.2	107	59	14502	*****	*******
PK51510-089	0.3600	0.04	0.12	103/.0	3.98E+08	1.19E+09	576.0	80.0	0.00022	331.2	228	-9	****	122.0	1.00000
1551011+496	0.2120	0.03	0.09	/12.2	2.00E+08	5.99E+08	94.0	15.0	0.00100	22.1	104	49	****	*****	******
1E51215+303	0.1300	6.03	0.09	4//.9	1.32E+08	3.95E+08	24/.0	12.0	0.00100	20.0	104	30	-1330	122.0	T-00006
WCOM	0.1029	0.02	0.05	390.1	0.31E+0/	1.09E+08	1122 0	80.0	0.00019	59.8	110	28	****	541.0	T-00006
800/16+/14	0.3000	0.01	0.04	919-8	1.200+08	3.78E+08	1132.0	80.0	0.00005	9,0C0	110	/1	-52/5	*****	******
KBS0413	0.1900	0.01	0.04	053.0	8.91E+0/	2.0/E+08	19.0	8.4	0.00100	3.5	49	18	****	*****	******
MS1221.8+2452	0.2180	0.01	0.04	/2/.6	9.33E+07	2.80E+08	34.0	8.4	0.00100	6.3	180	24	****	*****	******

Transient XRBs reveal jet dynamics from launch to termination

Before 2018 only source seen to decelerate but not tracked from launch: XTE J1550-564

(Slide adapted fr Rob Fender, see ngEHT Transients WP soon....)

Transient XRBs reveal jet dynamics from launch to termination

Before 2018 only source seen to decelerate but not tracked from launch: XTE J1550-564

(Slide adapted fr Rob Fender, see ngEHT Transients WP soon....)

Since ThunderKAT already > 4 new sources tracked from launch (Russell++2019; Bright+2020; Espinasse++2020; Wood++2021; Carotenuto+ +2021, 2022; Tremou++2022)

Transient XRBs reveal jet dynamics from launch to termination

(Slide adapted fr Rob Fender, see ngEHT Transients WP soon....)

 \star To accurately model, and eventually predict, MWL/MM transients we need improved understanding of macro/micro coupling

 \star Combining global mm-VLBI imaging (EHT) with MWL monitoring, can break current degeneracies for SMBHs, but key for all sources!

 \star EHT++ (ngEHT, etc.) aims for agile/subarray operations, ToOs and MWL-coordination. CTA is a key strategic partner for pinpointing particle acceleration, hadronic content, jet power

★ EHT++/ngEHT will give us access to a population of black hole systems, both supermassive (and stellar mass!)

Summary