Modeling transient source physics

DFG Deutsche Forschungsgemeinschaft

SPONSORED BY THE

Federal Ministry of Education and Research

Julia Tjus | 26.09.2022

Multimessenger astrophysics: combination of astrophysics with fundamental aspects of matter

Protons

Multimessenger astrophysics: a puzzle from low to high-energy and including γ , ν , and GWs

RAPP

Center

- Multimessenger Astronomy:
 connecting γ- and ν-emission
- Multimessenger modeling:
 Theoretical concepts
- Outlook

RAPP

Center

- Multimessenger modeling:
 Theoretical concepts
- Outlook

Gamma-ray measurements as upper limits to neutrino production

Multimessenger astrophysics:

Co-production of gamma-rays and neutrinos, but...

- Spectra steeper than E^{-2.2} quickly overproduce gammaray measurements (Fermi) when only considering intergalactic $\gamma - \gamma$
- Intrinsic $\gamma \gamma$ or γ -gas component needed?

Ahlers & Halzen, Rep. Prog. Phys. 78:126901 (2015)

10 years of point source searches in IceCube First pieces of evidence for sources

Aartsen et al (IceCube Coll) Phys. Rev. Lett. 124, 051103 (2020)

A first possible neutrino source: TXS0506+056

RAPP Center

Aartsen et al (IceCube/Fermi/MAGIC Coll), Science (2018)

Multimessenger emission with TXS0506+056

ΣΟΡΡ

A new event from the direction of TXS

Uncertainty ~3.5° (corner clipper)

Energy ~160TeV

Signalness 42%

 Almost exactly 5 years after the bright 290TeV event (IC170922A)

https://astro-colibri.com

Time-domain of AGN

Neutrinos arrive in γ -minima? Possible if gas density extreme: photon absorption

PKS1502+106

Kun, Bartos, JBT, Biermann, Halzen, Mező, ApJL (2021)

RAPP

Center

- Multimessenger Astronomy:
 connecting γ- and ν-emission
- Multimessenger modeling:
 Theoretical concepts
- Outlook

Cosmic-ray propagation regimes: physics

Cosmic-ray propagation regimes: methods

Test particle approach: transport modeling

Single Particle Picture: Equation of motion

 $\frac{d\boldsymbol{p}}{dt} = q(\boldsymbol{v} \times \boldsymbol{B})$

Multiple Particle Picture: Transport equation

Simplifying approach: using time scales in the transport equation

Scale analysis

$$au_{esc} = rac{H^2}{D}$$
 $au_{adv} = rac{H}{U}$ $au_{loss} = \left(rac{d\gamma}{dt}
ight)^{-1} d\gamma$

Loss & escape timescales – example (blazars)

Fig: Vladimir Kiselev (RUB)

Escape timescale: diffusive VS ballistic

→ Ballistic behavior at energies:

$$E \gtrsim Z \cdot \left(\frac{l_c}{10^{11} \,\mathrm{m}}\right) \cdot \left(\frac{B}{0.42 \,\mathrm{G}}\right) \cdot 10^{15} \,\mathrm{eV}$$

 Consideration in transport equation: change from diffusive to ballistic timescale

JBT et al, MDPI Physics (2022)

Code comparison – basic properties

- State-of-the-art codes so far: solution of transport equation with escape timescale
- New code development (Hörbe et al 2020) AGNPropa:
- 3-dim (B-field, gas & diffusion)
- Transport equation & EoM

JBT et al,	MDPI	Physics	(2022)
------------	------	----------------	--------

Code	AM ³	PARIS	$ATHE\nu A$	Böttcher
Reference	Gao et al. (2017)	Cerruti et al. (2015)	Dimitrakoudis et al. (2012)	Böttcher et al. (2013)
Transport equation	yes	yes	yes	yes
EoM	no	no	no	no
steady state	yes	yes	yes	yes
time depen- dent	yes	no	yes	no
B-field	1dim)	1dim	1dim	1dim
Diffusion	1-dim	1-dim	1-dim	1-dim
Photohadron	NOC	NOC	NOC	VAS
	yes	yes	yes	yes

Timescales: diffusive VS ballistic

$$\tau_{esc} = \frac{R^2}{D} \sim E^{-\frac{1}{3}} (E < qBl_c)$$

$$\tau_{esc} = \frac{R^2}{D} \sim E^{-2} (E < qBl_c)$$

$$\tau_{esc} = \frac{R}{c} \sim \text{const} (E > 100qBl_c)$$

С

Reicherzer, PhD thesis, Bochum/Saclay (2022)

conversion into Stochastic Differential Equation (SDE):

 $dr_{\nu} = A_{\nu}dt + D_{\nu\mu}d\omega^{\mu}$

→ treatment as quasi-particles

CRPropa 3.1: Merten, JBT, Fichtner, Sigl, JCAP (2017)

Treatment in one framework possible in this approach

Numerical solution via Cash-Karb or Boris-Push

First test results with AGNPropa

RAPP

Center

- Multimessenger Astronomy:
 connecting γ- and ν-emission
- Multimessenger modeling:
 Theoretical concepts
- Outlook

Summary

- Something is wrong with the γ-ν connection: are we looking at γabsorbed sources?
- Modeling via transport equation requires consideration of escape timescale (diffusive VS ballistic)
- 3dim modeling of structures to match time and energy domains at the same time

Outlook: v-GW-connection for SMBBHs

Kun, Jaroschewski, Ghorbanietemad, Frey, JBT, Britzen, Gabanyi, Kiselev, Schlegel, Schroller, Reichherzer, Cui, Wang & Shen, arXiv: 2209.05107, submitted

Transient multimessenger astrophysics: a (time-dependent) puzzle for physicists

SPONSORED BY THE

Thank you for listening – time for questions 🕲

Federal Ministry of Education and Research

Deutsche Forschungsgemeinschaft

SFB

Julia Tjus | 26.09.2022