Counterparts of Neutrinos

Anna Franckowiak

Astro-COLIBRI Workshop, 27.09.2022

RUHR UNIVERSITÄT BOCHUM

Diffuse Flux discovered!

RUB

Where do the neutrinos come from?

Three Strategies

Northern Sky

- 1. Look for hotspots in the neutrino sky \rightarrow identify source candidates
- 2. Start from EM source catalog \rightarrow look for neutrinos from source population ("stacking")
- 3. Focus on high-energy neutrinos with high signal probability \rightarrow look for EM counterparts

Main Challenges

- Neutrino angular resolution poor compared to EM instruments
- Large background of atmospheric events
- We don't know what to look for (many possible source candidates)

Source Candidates

Source Candidates (continued)

Extragalactic: Starforming galaxies, galaxy clusters, FRBs ...

Galactic sources: SNR, PWN, Binaries, Novae, Galactic plane ...

Counterpart Examples

Nov. 1

Dec. 1

Jan. 1, 2012

Sept. 1, 2011

Oct. 1

Counterpart Examples

Gamma-ray emitters are obvious candidates, but ...

... in order not to overshoot the measured gamma-ray background a majority of the neutrino sources has to be dark in GeV gamma rays ("hidden sources")

Selection of Source Candidates

Hotspot Search

IceCube Coll. PRL 124 (2020)

Search for neutrinos from pre-defined source list

- 110 sources based on gamma-ray properties and weighted with neutrino search sensitivity
 - Starburst galaxies detected by Fermi-LAT: 8 sources
 - Brightest Fermi-LAT **blazars** (above 1 GeV): 98 sources
 - Galactic sources based on VHE gamma-ray measurements: 12 sources

Most significant candidate: NGC 1068

Source Candidates – NGC 1068

- 2.9 sigma excess in TeV neutrinos (~60 events) in 10 years of IceCube data
- Nearby (M=14Mpc) Seyfert 2 galaxy
- AGN and star-forming activity

 1.70° -0.30° -2.30° 42.87° 42.87° 40.87° 38.87° 38.87°

Gamma rays need to be absorbed

IceCube Coll. PRL 124 (2020)

Stacking Analysis using Fermi-LAT blazar catalog

Correlation study of 3 years of IceCube data and 862 *Fermi*-LAT blazars

Fermi-LAT blazars can only be responsible for a **small fraction** of the observed ν 's.

Other Stacking Analyses

- Stacking of radio-loud AGN ~ 0.2% p-value (Plavin et al. ApJ 894 (2020))
- Stacking of blazars from BZCat ~ 6×10⁻⁷ p-value (Buson et al. 2022)
- Stacking of AGN cores: ~ 0.5% p-value (IceCube Coll. PRD 2022)
- Stacking of GRBs → GRBs contribute less than 1% to diffuse neutrino flux (IceCube Coll., ApJ 805 (2015), ApJ 824 (2016))
- Stacking of Fermi low-energy sources → contribute less than 1% (IceCube Coll. ApJ 2022)

• ...

Challenge: Weighting scheme needed. What is the right tracer for neutrino emission? \rightarrow Input from theory!?

IceCube Target of Opportunity Program Public alerts since April 2016

- Single high-energy muon track events (> ~100TeV)
- "Gold" alert stream: 10 / yr, ~5 / yr of cosmic origin
- Median latency: 30 sec

Goal: Find electromagnetic counterpart

IC-170922A – a 290 TeV Neutrino

Signalness: 56.5%

RUB IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Page 19

Fermi-LAT finds Flaring Source

RUB Fermi-LAT Coll., ApJ 846, 2017, Video credits: Matteo Giomi, Fermi-LAT Collaboration Page 20

Source Candidates – TXS 0506+056

RUB

300 TeV neutrino coincident with gamma-ray flare (3sigma significance)

Selection of Source Candidates

ZTF Follow-up Pipeline

Reject stars, planets, artifacts, asteroids

 high-energy neutrino alert arrives

2. Observe with ZTF

3. Follow-up with AMPEL

Nordin et al., A&A 631, A147 (2019)

RUB

4. Trigger further follow-up observations

Page 23

Trigger further follow-up observations

Page 24

Tidal Disruption Event (TDE)

~50 TDEs identified, 3 jetted TDEs

Distance: z = 0.05 (d = 230 Mpc), no gamma rays

ZTF

Page 27

Radio observations

Radio data reveals long-lasting activity of central engine

Two more TDE candidates!

$$p = 2 \times 10^{-4} (3.7 \sigma)$$

→ Very efficient neutrino production in TDEs

S. Reusch et al. PRL 2022

RUB

S. Van Velzen et al. arXiv:2111.09391 Page 29

What have we learned?

Sources accelerate protons to at least PeV energies

Next Generation Neutrino Telescopes

Today's neutrino telescopes

Neutrinos at EeV energies

KM3NeT / Baikal-GVD (construction started)

P-ONE Pacific ocean

TRIDENT South Chinese Sea

5x better sensitivity in the TeV-PeV energy range

ARA/ARIANNA, RNO, Gen2-Radio (proposals in)

New Instrument to identify Counterparts

Closing the Gap in the MeV Range

Summary

Neutrinos are unique messengers from the highenergy Universe

Summary

Multi-wavelength observations are key to identify neutrino (and cosmic-ray) sources

Two more TDE candidates!

$$p = 2 \times 10^{-4} (3.7 \sigma)$$

TDE population as new neutrino source class?

\rightarrow Very efficient neutrino production in TDEs compared to AGN?

S. Reusch et al. PRL 2022

RUB

S. Van Velzen et al. arXiv:2111.09391 Page 38

Pan-STARRS follow-up of IC-160427A

Туре	Number
QSO	10
Stellar	3
Old SNe	5
Young SN	1
Total	19

Young SN found: PS 16cgx at z=0.29

Chance probability:

- if **type Ic** (associated with GRBs): **~2%**
- if type la (no HE neutrinos exp.): ~15%

RUB E. Kankare et al. (IceCube and Pan-STARRS), A&A 626, A117, 2019

Neutrino should arrive at explosion time

Page 40

What type of SN is PS 16cgx? Spectra

Gemini 8m

Comparison with core-collapse (type Ic), candidates for choked jets and neutrino emitters Comparison with thermonuclear explosions (type Ia), no neutrino emitters

What type of SN is PS 16cgx? Colors

PS 16cgx is more likely of type la \rightarrow not a highenergy neutrino emitter

RUB E. Kankare et al. (IceCube and Pan-STARRS), A&A 626, A117, 2019

Gamma-Ray Bursts (GRBs)

Gamma rays and X-rays tell us where and when to look for neutrinos

Prompt emission of > 800 GRBs correlated with IceCube data → no excess found

Precursor and afterglow searches in preparation

GRBs contribute less than 1% to observed diffuse neutrino flux. Potential large population of nearby low-luminosity GRBs not constrained

IceCube Coll., ApJ 805 (2015), ApJ 824 (2016)

Stacking with radio-loud AGN

Correlation with VLBI-flux-density limited sample of AGN

Correlation of radio-bright AGN with IceCube neutrino alerts at chance coincidence of 0.2%

RUB

Plavin et al., ApJ 894 (2020), Plavin et al. 2020 arXiv:2009.08914

Stacking with radio-loud AGN

Correlation with VLBI-flux-density limited sample of AGN

Correlation of radio-bright AGN with IceCube neutrino alerts at chance coincidence of 0.2%

RUB

Plavin et al., ApJ 894 (2020), Plavin et al. 2020 arXiv:2009.08914

The Cosmic Neutrino Pi Chart

Bartos et al. Astrophys.J. 921 (2021)

IceCube-Gen2 time line

TDE AT2019dsg / "Bran Stark" coincident with 200 TeV Neutrino IC191001A

Neutrino Production in TDEs

RUB

Soft X-ray TDEs

Hayasaki, Nature Astronomy 2021

Radio emission of showers in dense media What are we looking for?

- Askaryan effect: Charge accumulation in the shower front gives rise to a changing current, which gives rise to radio emission
- Emission is coherent at frequencies corresponding to the size of the shower
- Index of refraction >> 1, emission strong on the Cherenkov cone, travel on nonstraight lines with changing n
- Signals contain information in amplitude, frequency and polarisation

RUB

Page 50

Spectrum of NGC 1068 (M77)

