I st Astro-COLIBRI Multi-Messenger Astrophysics Workshop Bochum, 27/09/2022

# Real-time multi-messenger searches with Mediterranean neutrino telescopes: from ANTARES to KM3NeT

INFN

Giulia Illuminati (INFN, University of Bologna)



### **ANTARES** telescope



**Track-like events:**  $v_{\mu} (v_{\tau})$  neutrino CC interaction near the detector

#### Topology used in online analyses



Shower-like events: all neutrinos NC,  $v_e, v_\tau$  CC interaction inside or very close to the detector





Visibility: ¾ of the sky, most of the Galactic plane ~95% duty cycle

#### **ANTARES** sample for online analyses:

- Up-going tracks, good reconstruction quality
- $\rightarrow$  0.5° median angular resolution
- $\rightarrow$  <10% muon contamination



### **Online activities: 2 approaches**





### **Online activities: 2 approaches**





### **ANTARES** alerts



### Alert system (TAToO: Telescopes and Antares Target of Opportunity) operating since 2009

### Four ANTARES alert triggers: **High energy (HE) trigger:** single neutrino with an **energy \geq 5 TeV.** – Rate: ~1/month Rate: ~3-5/year Very high energy (VHE) trigger: single neutrino with an energy $\geq$ 30 TeV. **Directional trigger:** single neutrino from the direction ( $\leq 0.4^{\circ}$ ) of a local galaxy ( $\leq 20 \longrightarrow \text{Rate:} \sim 1/\text{month}$ ) **Mpc)** of the Gravitational Wave Galaxy Catalogue (GWGC). This trigger was mainly introduced to enhance the chance to detect a local CCSN. No doublet trigger **Doublet trigger: at least two neutrinos** coming from **close directions (≤ 3°) within** a → ever been issued predefined time window (15 min).

- Alerts sent a few seconds (~6 s) after v detection
- All alerts were sent using the GCN normalized format and the standard VOEvent format
- ANTARES policy: all alerts were private (data exchanged upon MoU). Only if a potential counterpart was found, the alert became public

## **ANTARES** partner followers



### **ANTARES** partner followers







H.E.S.S.



Murchinson Wide Field Array (MWA)

Radio, x-ray and <mark>ɣ-ray telescopes</mark>

## **Statistics of ANTARES alerts**

### 322 alerts sent to robotic telescopes

- 68% followed within 24h
- Late follow-up due to bad weather or direction under horizon/close to Sun/Moon
- 26 sent to Swift
- 15 sent to Integral
- 20 sent to MWA
- 2 sent to H.E.S.S.



Skymap in Galactic coordinates with the positions of the directions of all the TAToO alerts sent by ANTARES

▼ early follow-up (<24 h)

**ANTARES** visibility

▼ late follow-up



Time delay between first TAROT/MASTER image and neutrino detection

## **Summary of ANTARES alert follow-up**

#### **Prompt follow-ups**

No clear optical transient counterparts found  $\rightarrow$  upper limits on the magnitude of a transient astrophysical source derived

#### Long-term follow-ups

224 alerts allowed for good optical follow-ups for 2/3 nights **No significant slowly varying optical counterpart found** 

#### Radio follow-up

2 alerts followed by M.W.A. **No strongly varying radio counterpart identified** 

#### H.E.S.S. follow-up

2 alerts followed shortly after v detection **No VHE candidates associated** 

#### Search for correlation with sources

No significant correlation with GRBs/CCSNs/blazars found

+ANT150901: only public alert with a complete MWL follow-up



### **Online activities: 2 approaches**





### **Examples of online ANTARES analyses**



## **KM3NeT**

### KM3NeT/ORCA

- **11 lines operating**, 115 lines foreseen
- $\circ$  2450 m depth in the Mediterranean Sea
- 40 km offshore from Toulon
- 1 dense building block
- 1/125 km<sup>3</sup> instrumented volume
- GeV energies
- Oscillations, mass hierarchy







- o **21 lines operating**, 230 lines foreseen
- 3500 m depth in the Mediterranean Sea
- o 100 km offshore from Sicily
- 2 sparse building blocks
- 1 km<sup>3</sup> instrumented volume
- 1-10 TeV energy threshold
- High-energy neutrino astronomy

36° 16' N 16 ° 06

### **KM3NeT**

- Same sky visibility and duty cycle as ANTARES
- Better median angular resolution:
  - ARCA: 0.1° (1°) @1PeV for tracks (showers)
  - ORCA: < 5° @50GeV, 1° @1TeV
  - Both ORCA and ARCA employed for astronomy
    - → Extended energy range:
      - 1 GeV → 10 PeV (+ 10-40 MeV)
    - → vast **variety** of astrophysical sources





### From ANTARES to KM3NeT: lessons learned

#### Online processing:

- Quite large difference between the online calibrations used for the reconstruction and the offline ones used in the offline analyses (no dynamical positioning)
- No online shower reconstruction => need to implement it (important discovery channel)
- Reduce the systematics on the angular direction of the alerts (good control of the pointing accuracy)

#### Neutrino alert selection:

- As the results were not so good, better neutrino selections
- Increase the scientific interest of the neutrino alerts (provide more astro content)
- Automatize the astro counterpart search directly at the alert level (crossmatch catalogs, LC...)
- Private / public neutrino alerts (how to optimize the follow-up)
- Uniformise the alert format: only VO event

#### Real-time correlation analysis:

- Automatize the analyses as much as possible

#### **Organisation:**

- Have a real organized team to manage the online analyses, not only a few persons. Reinforce the MWL follow-up expertise in the collaboration. Provide some centralized tools for the shifters

### **KM3NeT online analysis framework**



Work in progress

MeV Core-Collapse Supernova Neutrino Pipeline In place

### **KM3NeT online analysis framework**

PoS(ICRC2021)941 Eur. Phys. J. C 81, 445 (2021) Eur. Phys. J. C 82, 317 (2022)

raw data ~1-2 5 1-5 s ms **SN** analysis ular, SMS, e-mail)

MeV Core-Collapse Supernova Neutrino Pipeline In place

MeV neutrinos → no event-by-event reconstruction possible Strategy: exploit collective increase of multiplicity rates in the detector





With today's configuration (ARCA21+ORCA11)  $\rightarrow$  0.3\*Sensitivity

CCSN monitoring fully operational and connected to SNEWS

### **KM3NeT online analysis framework**

### **Event processing:**

- Online calibration -> working on including dynamical positioning (otherwise limited angular accuracy ~1-2 deg at HE, ~2-5 deg at LE)
- **Track & shower reconstructions** -> similar algorithms as offline, shower channel not yet in operation
- Event classification -> atmospheric muons-neutrinos, track-shower, atmospheric/cosmic neutrinos
- **Processing time:** 30 s -> 10-15 s after removing buffer
  - Events from each detectors **processed separately**
  - Events are copied to a common event dispatcher
     and stored in a dedicated DB





## **KM3NeT real-time follow-up pipeline**

#### **Goals:**

- Find multi-messenger correlated signal
- Perform neutrino follow-up search from external alerts
- Send quick results back to the public







### **KM3NeT real-time follow-up pipeline** Framework overview



### KM3NeT real-time follow-up pipeline Online analysis



### **KM3NeT real-time follow-up pipeline Online analysis**

- **ON/OFF**
- Binned analysis with an ON/OFF method

### • Regions definition:

- **ON:** Cone around the source (ROI)
- **OFF:** Declination band containing the source declination

### Event selection

- Optimisation: MRF/MDP
- Parameters:
  - ROI size
  - Neutrino purity: simple cuts, BDT score
- Time window: +/- 24h around the alert

• Analysis starts at alert reception and is updated for 24 hours

### Example of analysis output **Results:** Ns: 2 N<sub>R</sub>: 1.04



#### KM3NeT real-time follow-up pipeline • Ferri PKS 0735+17 position • Ferri PKS 0735+17 position • IceCube-211208A alert, 90% containment • Biakal shower event, 50% containment • IceCube-211208A alert, 90% containment • IceCube-21120A alert, 90% containment • IceCube-2120A aler

### ⇒ Same analysis method applied "offline" on multiple IceCube alerts associated with blazars:

- TXS0310 (IC220304A-GOLD)
- PKS0215 (IC220225A-BRONZE)
- PKS1741 (IC220205B-GOLD)
- PKS0735 (IC211208A-BRONZE, GVD211208A, Baksan)
  - Additional 1 month time window motivated by FERMI flare



Atm muon contamination 99%

Median  $E^{-2}$  cosmic neutrino angular resolution = 1.7°

### **Results:**

• 1 associated ARCA neutrino candidate with PKS0735

in the one-month time window, p-value = 0.14

- No association for the other blazars
- Reported in ATel #15290

⇒ Implementation in the online framework in progress

### **KM3NeT real-time follow-up pipeline** Alert handler



### KM3NeT real-time follow-up pipeline Alert handler

### From public GCN notices:

Commonly used in the transient community
 Multiple sources and event types (GRB, GW, Neutrino events, ...)
 Volume of electe to increase in the coming

 $\circ$  Volume of alerts to increase in the coming years  $\Rightarrow$  need for filtering



### **KM3NeT real-time follow-up pipeline** *GCN notices filtering:*



Plot Credit: Sébastien Le Stum

### KM3NeT real-time follow-up pipeline Alert handler

**External World** 

KM3NeT

#### Additional brokers:

Alert handler from other brokers to be implemented to follow-up on more channels/phenomena • FINK (ZTF/LSST) - Optical • TNS - SNs/FRBs



Classified

### KM3NeT real-time follow-up pipeline Alert handler

#### MicroQuasar broker

- Goal: multiwavelength monitoring of a list of known sources
- Looks for **new flares** from a list of microquasars
- Use publicly available SWIFT/BAT and MAXI lightcurves and FERMI-LAT data
- Search for **neutrinos during flares**



### **KM3NeT neutrino alert pipeline**

Goals:

- Find multi-messenger correlated signal
- Look for promising cosmic neutrino signature in real-time
- Send quick alerts



- Between 100 and 200 neutrinos per day **expected** (with full detector)
- From hundreds of neutrinos per day, a few alerts per month to be selected
- $\rightarrow$  two parallel selections

#### Pure neutrino selection

- based **only** on properties of **neutrinos**
- VHE and multiplet triggers ٠
- kept not to introduce bias ٠



#### Mixed neutrino-astro selection

based on the properties of **both neutrinos and** potential associated source





#### **Spatial correlation scan**

- Spatial crossmatch with sources of the Strasbourg astronomical Data Center (CDS) and specific catalogs for each neutrino alert
- Selection of interesting sources based on optical, gamma and radio properties ⇒ derive source ranking
- Proof of concept with AGNs planned for next months

Plot Credit: Godefroy Vannoye



#### Time correlation scan

- For each interesting source, send request to ZTF/LSST via the Fink broker for optical lightcurves and FAVA (Fermi Allsky Variability Analysis) to check for (lack of) flares
- Reranking of the sources accordingly

Plot Credit: Godefroy Vannoye







Plot Credit: Godefroy Vannoye

### **KM3NeT neutrino alerts: content**





#### **Alert content**

- Usual properties of neutrinos
- "Astro contents", including results of the spatial and time crossmatch
- General template (VOEvent) filled
   automatically and checked before sending
- Alert distributed through a broker (COMET)

#### Plot Credit: Godefroy Vannoye

## Getting ready to enter the online MM game

- KM3NeT online activities to be **fully operational soon**
- Online group ready to be on shift

| KM3NeT Shifter Tools ORCA - AF                                                                     | RCA - MM - CCSN - Alerts - T | ools 👻 💄 Giulia Illuminati 👻 |  |  |  |  |
|----------------------------------------------------------------------------------------------------|------------------------------|------------------------------|--|--|--|--|
| KM3NeT Shifter Tools home page                                                                     |                              |                              |  |  |  |  |
| Status: all services are up                                                                        |                              |                              |  |  |  |  |
| View status history. Last update: Sat Sep 24 2022 14:37:54 GMT+0200 (Central European Summer Time) |                              |                              |  |  |  |  |
| <ul> <li>ORCA high-level monitoring</li> <li>ORCA RTA dashboard</li> </ul>                         | External triggers            | 🗎 Elog                       |  |  |  |  |
| <ul> <li>ARCA high-level monitoring</li> <li>ARCA RTA dashboard</li> </ul>                         | KM3NeT alerts                | Rocket chat                  |  |  |  |  |
|                                                                                                    | Q Manual search              | GCN writer                   |  |  |  |  |
| MM dashboard                                                                                       |                              | Current shift report         |  |  |  |  |
| 🛎 CCSN monitoring                                                                                  |                              | All shift reports            |  |  |  |  |
| Website with all the required tools set up 🗹 🗯 Shifters calendar                                   |                              |                              |  |  |  |  |

- Shifter duties: monitoring of automated followup results, manual alert reporting back to the public through GCN or ATels
- **Dedicated website** built to facilitate the task for non-experts
- Commissioning period: October 2022 Spring 2023
  - Dynamical positioning
  - Online shower reconstruction
  - Improve v selection (BDT, GNN)
- Online analysis shifts starting in October 2022 to test the system
- Start with GCN follow-ups
- Follow-up system fully operational by Spring 2023
- Alert sending to start in Spring 2023

## **Summary and outlook**



### **ANTARES**

- Run for 15 years with high duty cycle (~95%)
- More than a decade of multi-messenger real-time activities
- Over 300 ANTARES alerts were followed by multi-wavelength observatories
- Over 500 alerts received by multi-wavelength observatories were followed by ANTARES
- No significant correlation found, but important return of experience for KM3NeT

### KM3NeT

- Next generation neutrino telescope in the Mediterranean Sea
- Under construction: currently running with 21 DUs (ARCA) and 11 DUs (ORCA)
- Has already reached ANTARES's effective area (at least x3 higher)
- Better median angular resolution (~0.1° @1 PeV) and x100 ANTARES instrumented volume (ARCA)
- Will allow multi-flavour neutrino detection in real-time over an extended energy range (ARCA+ORCA)
- Real-time framework in preparation, will enter the multi-messenger game soon
- Great interest in collaborating with the multi-messenger transient community!





## Backup



Flux U.L. F(E > 320GeV) < 2.4x10<sup>-7</sup>m<sup>-2</sup>s<sup>-1</sup>

bright star (USNO-B1.0 0626-0501169) identified by MASTER

Analysis of **optical and IR archival data** point to USNO-B1.0 0626-0501169 being a young accreting G-K star or a binary system of chromospheric active stars (RS CVn), undergoing a flaring episode that produced the X-ray emission  $\rightarrow$  **unlikely (3%** chance association) to be the origin of ANT150901A

> Great interest in the community (15ATels+6 GCN) A total of 20 observatories answered to this trigger: one radio, 11 optical/IR, four X-ray satellites, four VHE gamma-ray and one neutrino observatory

Uncatalogued, relatively bright and variable X-ray source (0.5-1.4)x10<sup>-13</sup> erg cm<sup>-2</sup> s<sup>-1</sup> detected by Swift-XRT 0.11° from neutrino direction

Rmag = 12.6

USNO-B1: 0626-0501169



### **Follow-up of IceCube neutrinos**



 $\rightarrow$  115 neutrino IceCube triggers received, **37 analysed** (7 HESE, 3 EHE, 10 gold and 17 bronze)

 $\rightarrow$  No neutrino candidates found compatible with any of the alerts

 $\rightarrow$  90% confidence level upper limits on the neutrino fluence:

~15 GeV/cm2 in [2.8 TeV, 3.3 PeV] for  $E^{\text{-}2}$  ~30 GeV/cm2 in [0.4 TeV, 280 TeV] for  $E^{\text{-}2.5}$ 

|      | Fluence U.L. (Gev cm                       | <sup>2</sup> ) at 90 % C.L.                            | GCN                                                     | ATels                                                   |
|------|--------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
|      | $dN/dE \propto E^{-2}$                     | $dN/dE \propto E^{-2.5}$                               | Id                                                      | Id                                                      |
| -28° | 14 (2.8 TeV - 3.1 PeV)                     | 27 (0.4 - 280 TeV)                                     | /                                                       | 9324                                                    |
| -26° | 16 (2.9 TeV - 3.3 PeV)                     | 43 (0.5 - 250 TeV)                                     | 19885                                                   | 9440                                                    |
| -26° | 13 (3.8 TeV - 3.8 PeV)                     | 22 (0.7 - 370 TeV)                                     | 20134                                                   | 9715                                                    |
| -57° | 16 (2.5 TeV - 2.5 PeV)                     | 26 (0.5 - 220 TeV)                                     | 20926                                                   | 10189                                                   |
|      |                                            |                                                        |                                                         |                                                         |
|      |                                            |                                                        |                                                         |                                                         |
| -8°  | 16 (5.0 TeV - 5/0 PeV)                     | 49 (1 - 450 TeV)                                       | 31252                                                   | 15121                                                   |
| -4°  | 17 (5.0 TeV - 5.0 PeV)                     | 40 (1 - 450 TeV)                                       | 31262                                                   | 15127                                                   |
| -51° | 16 (3.0 TeV - 3.3 PeV)                     | 30 (0.6 - 300  TeV)                                    | 31556                                                   | 15207                                                   |
|      | -28°<br>-26°<br>-57°<br>-8°<br>-4°<br>-51° | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

#### ANTARES visibility sky-map for IC170922 (TXS 0506+056)



#### **Dedicated offline follow-up:**

- TXS0506+056
  - $\rightarrow$  Astrophys.J.Lett. 863 (2018) 2, L30
- AT2019dsg and AT2019fdr
  - $\rightarrow$  Astrophys.J. 920 (2021) 1, 50
- HESE and EHE events
  - → Astrophys.J. 879 (2019) no.2, 108

## Follow-up of LIGO/Virgo GWs



Neutrinos would

- help **understand physics** of the merger, jets
- significantly constrain the location of the source



- RunO1 (2015): 3 GW events detected, all followed offline (online analysis not ready)
- RunO2 (2016-2017): 15 GW alerts, all followed online (manually)
- RunO3 (2019-2020): 78 GW alerts (22 retracted, 3 terrestrial noise, 2 non visible) → 51 followed online (fully automatised)



→ Eur.Phys.J. C77 (2017) no.12, 911, → Astrophys.J. 850 (2017) no.2, L35

## Follow-up of Fermi-GMB and Swift GRBs





Fermi/Swift alert message sent via the GCN within a few tens of seconds after GRB detection

- Automatic analysis of ANTARES online data
- Run for **9 years** (01/2014–02/2022)
- **317** Swift and **230** Fermi-GBM bursts followed
- No significant coincidence detected

#### Offline analyses:

- $\rightarrow\,$  Eur. Phys. J. C 77.1 (2017)
- $\rightarrow$  Mon. Not. Roy. Astron. Soc. 469 (2017)
- → MNRAS 500 (2021) 5614

Skymap in Galactic coordinates with the positions of the **GRBs followed by ANTARES**:



 $\rightarrow$  One coincidence event = p-value of 2-5×10<sup>-5</sup>

## **Follow-up of HAWC alerts**





Skymap in Galactic coordinates with the positions of the HAWC alerts:

Not followed by ANTARES

**ANTARES** visibility

- Alerts of short (0.2 to 100 s) TeV transients sent by the ٠ **HAWC** Collaboration since mid 2019 ( $\rightarrow$  <u>link to alert list</u>)
- Targeting in particular GRBs ٠
- Alerts channeled via the **AMON** framework and then distributed by the GCN
- Up to Feb. 2022, 22 triggers sent, 7 followed by **ANTARES (in FoV)**
- No coincidence found



- Additional follow-up of the IceCube + HAWC coincidences (NuEM) provided by AMON ( $\rightarrow$  <u>link to alert list</u>)
- No coincidence found



### **Microquasar broker**

### Dedicated sources multiwavelength monitoring: Microquasar broker

#### • Goals:

- Multiwavelength monitoring of a list of known sources
- Have an broker **independent** from GCN or ATels reported by other collaborations
- Potentially trigger joined analysis between HESS and KM3NeT

#### • From a list of microquasar sources

- Microquasars: X-Ray binaries with accretion-ejection (jets) phenomena
- Transient sources with flare periods and spectra state transitions
- Continuous MWL monitoring
- Neutrino search follow-up during flares

V4641 Sgr XTEJ1550-564 GRO J1655-40 GRS 1915+105 GX339-4 H1743-322 IGRJ17091-3624 V404 Cyg MAXI J1535-571 MAXI J1348-630 MAXI J1820+070 GRS1716-249 4U1630-472

#### Slide Credit: Sébastien Le Stum

## 46

### **Microquasar broker**

### **Microquasar X-Ray flares detection**

⇒ Monitoring new flares from a list of sources

- From publicly available SWIFT/BAT and MAXI lightcurves
- Evaluate signal baseline in a 6 month window before current date
- Check if the most recent flux data point verifies:
  - $F \delta F > \mu_{BL} + N\sigma_{BL}$

Flux, error

Baseline mean Baseline Std. Dev

• And if hardness ratio (between 2 energy bands):

```
|H \mp \delta H| > |\mu_{BL} \pm N\sigma_{BL}|
```





GX339-4 recent flare (reported in ATel#15578)

Baseline is shown in red, alert sent from green data point

## **Microquasar broker**

### **Microquasar flares detection**

If an flare is detected, send alert as a VOEvent through a COMET server

- ⇒ Follow-up with FERMI/LAT Analysis (HE gamma)
  - Binned Likelihood Analysis
  - Search for new, uncatalogued, source at the alert position
  - Time window: 24h before alert time up to last available data

#### Alert levels:

- Level 1: X-Ray flux increase OR hardness ratio transition
- Level 2: X-Ray flux increase AND hardness ratio transition
- Level 3: FERMI HE gamma signal

#### ⇒ KM3NeT follow-up analysis

• Time window: +/- 1 day around alert time (TBD with alert level)

### **KM3NeT neutrino alerts: overview**



Diagram describing the alert generation

### **KM3NeT neutrino alerts: reconstruction**



Total processing time of events with ARCA

- Full reconstruction of track and shower direction and energy in less than 1 minute
- Classifier:
  - Neutrino/Muon
  - Track/Shower



Diagram describing the alert generation