Particle physics and cosmology of an MeV-scale $L_{\mu} - L_{\tau} \mod [2107.14528]$

Manuel Drees, Wenbin Zhao

Bethe Center for Theoretical Physics and Physikalisches Institut, Universität Bonn

29/03/2022

$\bigcirc U(1)_{L_{\mu}-L_{\tau}} \text{ model}$

- 2 Constraints: From Particle Physics to Cosmology
- 3 Further Application: 511 keV Excess

4 Future Tests

particles	$SU(2)_L$	$U(1)_Y$	$U(1)_{L_{\mu}-L_{\tau}}$
L_e, L_μ, L_τ	2	-1/2	(0,+1,-1)
e_R, μ_R, au_R	1	-1/2	(0,+1,-1)
* N_e, N_μ, N_τ	1	0	(0,+1,-1)
$^*\psi$	1	0	q_ψ

Gauging the accidental symmetry of the SM.

- Anomaly-Free: Unlike B L, anomaly cancellation happens between the second and third generation, thus it is anomaly free even without right-handed neutrinos.
- $g_{\mu} 2$: A new gauge boson X directly couple to muon, hence it contribute to $g_{\mu} 2$ through one loop vertex.
- Dark Photon: New gauge boson couples to EM currents via loop corrections. Very little constraint from e^+e^- colliders.

Neutrino Sector

- Minimal: 3N and 1σ .(K. Asai et al., 1705.00419 & 1811.07571)
- Non-minimal: Relation breaks down, but can realize leptongenesis. (e.g. 3 scalars, D.Borah et al., 2106.14410.)

DM Model

Model Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} - g_X X_\lambda (\bar{\mu} \gamma^\lambda \mu - \bar{\tau} \gamma^\lambda \tau + \bar{\nu}_{\mu L} \gamma^\lambda \nu_{\mu L} - \bar{\nu}_{\tau L} \gamma^\lambda \nu_{\tau L}) - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{1}{2} m_X^2 X_\mu X^\mu + \bar{\psi} (i\partial \!\!\!/ - m_\psi) \psi - q_\psi g_X X_\lambda \bar{\psi} \gamma^\lambda \psi \,.$$

Accommodates a rich phenomenology in Particle Physics experiments:

- Neutrino Trident Production: $\nu_{\mu}N \rightarrow \nu_{\mu}N\mu^{+}\mu^{-}$.
- Muonic Dark Force: $e^+e^- \rightarrow \mu^+\mu^- X$, $X \rightarrow \mu^+\mu^-$.

Consider one loop corrections:

- Anomalous magnetic moment of muon: $g_{\mu} 2$.
- Coherent Elastic Neutrino Nucleus Scattering: $\nu N \rightarrow \nu N$.
- White Dwarf Cooling: $e^+e^- \rightarrow \nu\bar{\nu}$; Or $\nu e \rightarrow \nu e$ scattering.

One Loop Corrections

To explain the anomalous:

$$\Delta \alpha_{\mu} = (251 \pm 59) \times 10^{-11}$$

We need:

$$m_X \sim \mathcal{O}(\text{GeV}), g_X \sim 0.1;$$

 $m_X \sim \mathcal{O}(\text{MeV}), g_X \sim 10^{-3(4)}.$

Additional Lagrangian term:

$$\mathcal{L}_{X,J_{\text{em}}} = -\epsilon_A e X_\mu J_{\text{em}}^\mu ,$$

$$\epsilon_A = -\frac{eg_X}{12\pi^2} \ln\left(\frac{m_\tau^2}{m_\mu^2}\right) \approx -\frac{g_X}{70}$$

X can be regarded as a dark photon. Its mixing with Z boson is further suppressed by Z boson mass.

GeV DM: Hosts of constraints

M. Drees, M. Shi and Z. Zhang, 1811.12446

MeV DM: Not well constrained yet!

A lot of parameter space in $\mathcal{O}(10)$ MeV is still free! Very small gauge coupling! $\langle \sigma v \rangle$ is expected to be samll.

W.B.Zhao (BCTP)

IRN Terascale Meeting

29/03/2022 8/26

Relic Density

For DM mass below 200 MeV, it mainly annihilates to neutrinos:

$$\sigma(\psi\bar{\psi} \to \nu_l \bar{\nu}_l) v \approx \frac{q_{\psi}^2 g_X^4}{8\pi m_X^2} \frac{1}{(\delta + v_{\rm rel}^2/4)^2 + \gamma_X^2} \,.$$

With

$$r = m_{\psi}/m_X; \quad \delta = 4(m_{\psi}/m_X)^2 - 1; \quad \gamma_X = \Gamma_X/m_X,$$

Need $\langle \sigma v \rangle$ in $\mathcal{O}(1\text{pb})$ to produce correct relic density:

• Introduce charge hierarchy. See K. Asai et al, 2011.03165.

• Resonant enhancement. Similar Work: P. Foldenauer, 1808.03647. Need to treat the thermal average carefully to solve the Boltzmann equation.

$$\frac{dn_{\psi}}{dt} + 3Hn_{\psi} = -\frac{\langle \sigma v \rangle}{2} (n_{\psi}^2 - n_{\psi,eq}^2).$$

Relic Density: $\langle \sigma v \rangle$ Below the Pole

 $r=\frac{m_\psi}{m_X},$ large r is close to the pole. kinetic energy dominated \rightarrow mass dominated

W.B.Zhao (BCTP)

IRN Terascale Meeting

Relic Density: $\langle \sigma v \rangle$ Above the Pole

 $\delta = 4(\frac{m_{\psi}}{m_X})^2 - 1$, small δ is close to the pole. Focus on this case!

IRN Terascale Meeting

Relic density

Two possible solutions sit on both sides of the pole. When $m_{\psi} < \frac{m_X}{2}$, need $\langle \sigma v \rangle_{x_f} \approx 40$ pb.

W.B.Zhao (BCTP)

IRN Terascale Meeting

29/03/2022 12/26

Both ψ and X couples to neutrinos and annihilate/decay to them. If decoupling happens after neutrino decoupling, neutrino temperature will be increased compared with the SM case.

The impact is usually parameterized by $N_{\rm eff}$, defined by the total relativistic energy density well after electron–positron annihilation:

$$\rho_{\rm rad} = \left[1 + N_{\rm eff} \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}}\right] \rho_{\gamma} \,,$$

Assuming the following condition, $N_{\rm eff}$ can be quantified by entropy conservation:

- No chemical potential.
- $m_{\psi}, m_X \gg T_r \rightarrow$ entropy was totally transferred.
- Instant neutrinos decouple at $T_{\nu,D}$.

In the Standard Model, the ν_{μ}, ν_{τ} decouple from photon plasma at T = 2.3 MeV, while ν_e decouple a little later at T = 1.5 MeV. In the SM, the dominant processes are mediated by Z boson:

$$\nu_{\mu,\tau}\bar{\nu}_{\mu,\tau} \xrightarrow{Z} e^+e^-, \nu_e\bar{\nu}_e.$$

We have additional contribution mediated by X boson:

$$\nu_{\mu,\tau}\bar{\nu}_{\mu,\tau} \xrightarrow{X} e^+ e^-.$$

A larger cross section means they would decouple later. By comparing total thermally averaged cross section with the SM ones, we find $T_{\nu,D} \simeq 2.0$ MeV. The contributions from dark matter annihilation and X boson decay are:

$$N_{\text{eff}} = N_{\nu} \left[1 + \frac{1}{N_{\nu}} \sum_{i} \frac{g_i}{2} F\left(\frac{m_i}{T_{\nu,D}}\right) \right]^{4/3}$$

Where

$$F(x) = \frac{30}{7\pi^4} \int_x^\infty dy \frac{(4y^2 - x^2)\sqrt{y^2 - x^2}}{e^y \pm 1} \,.$$

Note the maximum contribution is larger than simply adding massless particles.

BBN and Hubble tension

A lower bound on X boson mass with $m_{\psi} \approx 0.5 m_X$, $m_X > 20$ MeV.

W.B.Zhao (BCTP)

BBN and Hubble tension

Planck2018,1807.0620

 $\delta N_{\rm eff} = 0.4$ is able to reduce the tension to 2σ . Sunny Vagnozzi, 1907.07569

W.B.Zhao (BCTP)

29/03/2022 17/20

Light DM is also facing CMB constraints:

$$f_{\text{eff}}(m_{\psi}) \frac{\langle \sigma v \rangle}{2} \le 4.1 \times 10^{-28} \left(\frac{m_{\psi}}{\text{GeV}}\right) \text{cm}^3/\text{s},$$

This constraint applies to our model in two scenario:

- $m_{\psi} > m_{\mu}$: $\psi \bar{\psi} \to \mu \bar{\mu}$ becomes a main annihilation channel for dark matter, completely excluded.
- $m_{\psi} < m_{\mu}$: Only constrain $\psi \bar{\psi} \to e^+ e^-$ process. The cross-section is $\left(\frac{e\epsilon_A}{g_X}\right)^2 \approx 2 \times 10^{-5}$ smaller than that for $\psi \bar{\psi} \to \nu \bar{\nu}$.

Overall Constraints

A small but charming region! We use $g_X = 4.5 \cdot 10^{-4}$ and $m_X = 20$ MeV as a benchmark point. W.B.Zhao (BCTP) IRN Terascale Meeting 29/03/2022 19/26

511 keV Excess

COSI,1912.00110

Can be explained by DM annihilation to e^+e^- :

$$10^{-3} \text{fb} \le \langle \sigma(\psi \bar{\psi} \to e^+ e^-) v \rangle \cdot \left(\frac{m_{\psi}}{1 \text{ MeV}}\right)^{-2} / 2 \le 1 \text{fb}$$

W.B.Zhao (BCTP)

29/03/2022 20/26

When calculating relic density:

$$\begin{split} \sigma(\psi\bar{\psi}\to\nu_l\bar{\nu}_l)v\approx &\frac{q_\psi^2g_X^4}{8\pi m_X^2}\frac{1}{(\delta+v_{\rm rel}^2/4)^2+\gamma_X^2}\\ \langle\sigma(\psi\bar{\psi}\to e^+e^-)v\rangle\approx 2\times 10^{-5}\langle\sigma(\psi\bar{\psi}\to\nu\bar{\nu})v\rangle\,. \end{split}$$
 Today $v_{\rm rel}^2\approx 10^{-6};$ when DM decouple $v_{\rm rel}^2\approx 10^{-1}:$

$$\frac{\langle \sigma v \rangle_{t_0}}{\langle \sigma v \rangle_{x_f}} \approx \frac{\delta^{-1}}{10} \, .$$

To produce relic density correctly, q_{ψ} and δ has a one-to-one correspondence. Thus:

$$q_{\psi} \downarrow \to \delta \downarrow \to \langle \sigma v \rangle_{t_0} \uparrow$$

In the 2σ region of $g_{\mu} - 2$, q_{ψ} can vary from $0.9 \sim 4.9$.

More Comments:

- Can only contribute to 30% - 40% of the flux due to positron-electron in-flight annihilation.
- It will work better if DM density peaks near the galactic center.
- Given the constraints mentioned do NOT depend on q_{ψ} , it becomes a handle to tune the cross-section today.

Future Tests: Upcoming Experiments

M. Bauer, P. Foldenauer and J. Jaeckel, 1803.05466.

It might also be testable through the process $e^+e^- \to X\gamma$ followed by invisible decays of the X boson. The differential cross section reads:

$$\frac{d\sigma}{d\cos\theta} = \frac{\alpha(e\epsilon_A)^2}{s(s-m_X^2)} \left[\frac{s^2 + m_X^4}{\sin\theta^2} - \frac{(s-m_X^2)^2}{2}\right],$$

Requiring $|\cos \theta| < 0.985$ in order to make sure that the photon can be detected and taking $m_X^2 \ll s$ leads to a cross section of about

$$\sigma \simeq 20 \operatorname{ab} \left(\frac{g_X}{10^{-3}}\right)^2 \frac{(10 \text{ GeV})^2}{s}.$$

Hundreds of events in Belle-II.

Future Tests: Neutrino Experiments

It predicts $\langle \sigma(\psi\bar{\psi} \to \nu_l \bar{\nu}_l) v \rangle_{\text{now}} \approx 10^{-24} - 10^{-25} \text{ cm}^3/\text{s}$ when solving the 511 keV excess, which can be tested through next generation of neutrino experiments.

C. A. Arguelles et al, 1912.09486

29/03/2022 25/26

- $U(1)_{L_{\mu}-L_{\tau}}$ model can explain $g_{\mu}-2$ in MeV region with a relatively small coupling g_X .
- Resonant structure can be used to give correct relic density in this region.
- If DM mass is around 10 MeV, it also impacts the neutrino sector as they decouple, hence increase N_{eff} and relax the Hubble tension.
- It also contributes to 511 keV excess through loop correction.
- The whole scenario can be tested in future experiments like NA64 μ , JUNO and Belle-II.