Hints of dark matter-neutrino interactions in Lyman- α data

Matteo Lucca Université Libre de Bruxelles (ULB)

Presentation for the IRN Terascale meeting 2022

Based on Hooper & Lucca 2021 [2110.04024]

Lyman- $lpha$ flux PS	Lyman- $lpha$ vs DM	$DM extsf{-} u$ interactions	Take-home message

The Lyman- α flux power spectrum

Matteo Lucca Hints of DM- ν interactions in Lyman- α data

- Photons from quasars 1) travel through H clouds, 2) get absorbed and 3) re-emitted in other direction
- Since clouds are at lower redshifts than source, features are shifted towards lower wavelengths \rightarrow Ly α forest
- Density and temperature of clouds determine depth and width of absorption features

Adapted from www.astro.ucla.edu

1/17

 Calculate normalized "transmission", Fourier transform, ensemble average, get flux PS and its variance

Adapted from Viel et al. 2013 2/17

Matteo Lucca

Adapted from Viel et al. 2013 2/17

Matteo Lucca

State-of-the-art at large scales:

- Overall good agreement with WL
- 2 3σ tension with early-time probes in tilt of the PS

State-of-the-art at small scales:

- Suppression at small scales is caused by 1) gas pressure and 2) thermal broadening
- If the gas is colder one has less suppression (and vice versa)
- \rightarrow Possible to determine the temperature evolution!

Adapted from Palanque-delabrouille et al. 2019 (top) Irsic et al. 2017 (bottom)

3/17

Matteo Lucca

Lyman- $lpha$ flux PS	Lyman- $lpha$ vs DM	$DM extsf{-} u$ interactions	Take-home message

Lyman- α as a tool to constrain dark matter

Matteo Lucca Hints of DM-u interactions in Lyman- α data

DM- ν interactions

Generalities on the role of (light/warm and interacting) DM:

- ▶ If the DM is 1) light/warm ($m_{\rm DM} \simeq O(\text{few keV})$) or 2) interacting (with e.g. baryons, γ , ν and dark radiation)
- High velocity dispersion/ interactions act as pressure/dragging effect countering the gravitational collapse
- Shape of the suppression encapsulates the model dependence

Adapted from Schewtschenko et al. 2014

- Although this is true at the level of the matter PS, the true observable is still the flux PS
- In that case, the suppression can be (at least partially) compensated by modifications to T(z) (which becomes model-dependent) → This needs to be taken into account!

Adapted from Viel et al. 2013 5/17

However, CLASS/CAMB can only give you the *matter* PS! So how to perform MCMCs without the need of very expensive N-body simulations? \rightarrow One option is to (see e.g. Murgia et al. 2017, 2018, Archidiacono et al. 2019)

- 1. express the suppression of the matter PS in terms of the transfer function $T^2(k) = P(k)/P_{\Lambda CDM(k)} = [1 + (\alpha k)^{\beta}]^{\gamma}$,
- 2. create a grid of $\{\alpha, \beta, \gamma\}$ combinations (also with $\{n_s, \sigma_8, z_{reio}\}$),
- 3. for each combination calculate the flux PS (with T(z) effects!),

and (after the grid is ready) given a model's prediction for $\{\alpha, \beta, \gamma\}$

- 4. interpolate the pre-computed grid,
- 5. get the corresponding flux, χ^2 , constraints, etc.

Adapted from Murgia et al. 2017

6/17

Only MIKE/HIRES Ikl exists so far (Archidiacono et al. 2019)

The curious case of ... dark matter-neutrino interactions

Matteo Lucca Hints of DM- ν interactions in Lyman- α data For the specific case of DM- $\!\nu$ interactions, we assume

- 1. that the neutrinos are massive (non-trivial, more on this next),
- 2. that they interact with the DM via a Thompson-like scattering process (i.e. $m_{\rm DM} \gg m_{\nu}$) with the CS

$$\sigma_{\mathrm{DM}\nu} = \sigma_0 \left(\frac{m_{\mathrm{DM}}}{1 \text{ GeV}} \right) = u_{\mathrm{DM}\nu} \sigma_{\mathrm{T}} \left(\frac{m_{\mathrm{DM}}}{100 \text{ GeV}} \right) \,,$$

where $u_{\mathrm{DM}\nu}$ is just a dimensionless reformulation of σ_0 ,

- 3. that the interaction strength is the same for all 3 neutrino species,
- 4. that the total DM content of the universe is interacting, and
- 5. that the neutrino masses follow the normal hierarchy (with a lower limit on $\sum m_{\nu}$ of 0.06 eV)

State-of-the-art before our paper:

1. Wilkinson et al. 2014 reformulated previous WDM constraints (from Viel et al. 2013) assuming massless neutrinos

ightarrow obtaining $u_{{
m DM}
u} < 1 imes 10^{-7}$

2. Mosbech et al. 2020 accounted for m_{ν} ("massive" work!), tested the model against P18+BAO and found that the model can solve the S_8 tension (they also made their CLASS code public!) Straightforward goals of our paper:

- 1. Update Wilkinson at al. by
 - 1.1 accounting for m_{ν} (using Mosbech et al.'s code) and
 - 1.2 confronting the model with real Lyman- α data (using Archidiacono et al.'s likelihood)
- 2. Check if the model can still solve the $\sigma_{\rm 8}$ tension after the inclusion of Lyman- α

Expected timeline:

- 1. set up the runs
- 2. check 2 weeks later to find clean upper bounds on $u_{{
 m DM}
 u}$
- 3. write a quick paper
- 4. celebrate the victory

Lyman- α flux PS	Lyman- $lpha$ vs DM	$DM extsf{-} u$ interactions	Results	Take-home message

10 months later

Matteo Lucca Hints of DM-u interactions in Lyman-lpha data

Matteo Lucca

Two main possible origins for the presence of this preference:

1. Numerical

- On the CLASS side: no error here
- On the MP side: validity of the lkl pushed to its limits (more tests on-going) although all sanity checks are formally passed

So let us assume the numerical side can be trusted

Lyman- α flux PS	Lyman- $lpha$ vs DM	$DM extsf{-} u$ interactions	Results	Take-home message
2. Physi	cal			
	ΛCDM shows defici ightarrow additional tilt ne	t at large scales and eeded (in agreement	d excess at si with SDSS	mall scales analysis)
	10^{0}		z = 5.4 z = 5.0 z = 4.6 z = 4.2	

12/17

Matteo Lucca

Lyman- α flux PS	Lyman- α vs Divi	Divi- ν interactions	Results	Take-nome message
2. Physical				

DM-v interactions can correctly increase the tilt at large scales, but with a too large suppression at small scales

13/17

Matteo Lucca

Lyman- α flux PS	Lyman- $lpha$ vs DM	DM- ν interactions	Results	Take-home message
2. Physi	cal			

Remember however that a lower gas temperature can enhance the spectrum at small scales

14/17

Matteo Lucca

Lyman- α flux PS	Lyman- $lpha$ vs DM	$DM ext{-} u$ interactions	Results	Take-home message
2 Phys	ical			

The two contributions perfectly compensate to fit the data better than ΛCDM (Δχ² = -8 for MIKE/HIRES, approx. 3σ)!

15/17

Matteo Lucca

- It is at this point fair to ask: why hasn't this been seen for other models?
 - WDM does not enhance large scales (i.e. it does not *tilt* the overall spectrum, but only suppresses it)
 - ▶ The same is also true for many other models such as inter. DM-DR

Also:

- In many cases, constraints "recycled" from WDM bounds instead of being directly derived from the data → "good" models might have been gone undetected
- This is precisely the case for the Wilkinson et al. results obtained in the context of DM-(massless) ν interactions (as we find explicitly)
- \rightarrow So, there is nothing special about this model *per se*: it just tilts the spectrum in the right way (not so easy though)

Final thoughts and take-home message

Matteo Lucca

Lyman- α flux PS

17/17

- There is a 2 3σ tension in the determination of the matter/flux PS tilt between early-time inference and direct Lyman-α measurements
- Many DM models predict a suppression of the matter/flux PS at Lyman-α scales, but only few can correctly adjust the spectrum's tilt
- DM- ν interactions are one such example, leading to a 3σ preference for a non-zero interaction strength
- Future work fundamental to test the validity of method and results

Matteo Lucca