A. Montanari (presenter), E. Moulin and D. Malyshev on behalf of the H.E.S.S. Collaboration

IRN Terascale @ Bonn – 29th March 2022

Dark Matter annihilation signals' search in the H.E.S.S. Inner Galaxy Survey

REF. A. Montanari et al. on behalf of the H.E.S.S. Collaboration, POS(ICRC2021)511

IRN

rascale

OUTLINE

OUTLINE

Introduction: WIMPs & Indirect Dark Matter search in gamma rays

Evidence

Candidates... Mass - M⊙ [eV] Primordial black holes DM **10**³⁰ - M⊳ **10**²⁰ **WIMPs 10**10 ν_s 1 Ŵ **10**-10 Axion-like particles **10**-20

. . . .

e⁺.W⁺.q,.

Candidates ...

- Cold Dark Matter paradigm
- Focusing on Weakly Interactive Massive Particles (WIMPs)
- WIMPs created thermally in the Early Universe
 - Annihilation cross section expected for thermal WIMPs ($\langle \sigma v \rangle_{th} = 3x10^{-26} \text{ cm}^3 \text{ s}^{-1}$).

• WIMPs can self-annihilate and produce Standard Model particles in the final states

- Cold Dark Matter paradigm
- Focusing on Weakly Interactive Massive Particles (WIMPs)
- WIMPs created thermally in the Early Universe
 - Annihilation cross section expected

for thermal WIMPs ($\langle \sigma v \rangle_{th} = 3x10^{-26} \text{ cm}^3 \text{ s}^{-1}$).

 WIMPs can self-annihilate and produce Standard Model particles in the final states eventually detectable by satellite (*Fermi-LAT*) and ground-based experiments (HAWC, H.E.S.S., MAGIC, VERITAS).

UNIVERSITE PARIS PARIS-SACLAY

- WIMPs can self-annihilate and produce \rightarrow gamma-rays eventually detectable by H.E.S.S.
- Assuming annihilation process almost at rest;
 → A smoking-gun signature for DM is a very distinct energy cut-off, close to the DM particle mass.
- Gamma-ray flux expected from DM annihilations:

- WIMPs can self-annihilate and produce \rightarrow gamma-rays eventually detectable by H.E.S.S.
- Assuming annihilation process almost at rest;
 → A smoking-gun signature for DM is a very distinct energy cut-off, close to the DM particle mass.
- Gamma-ray flux expected from DM annihilations:

$$\frac{d\phi_{\gamma}}{dE}(E_{\gamma},\Delta\Omega) = \frac{\langle \sigma v \rangle}{8\pi m_{\rm DM}^2} \sum_{f} Br_{f} \frac{dN_{f}}{dE_{\gamma}} J(\Delta\Omega)$$
Astrophysical
factor $J(\Delta\Omega) = \int \rho^2 (r(s,\theta)) ds d\Omega$:

- Model needed for the density profile;
- Dependence on dark matter halo modeling.

Galaxy satellites of the Milky Way

- Many of them within the 100 kpc from GC: lower signal than from the GC
- o Low astrophysical background

Cosmological simulation of a Milky Way-like galaxy Aquarius, Springel et al., Nature 2008

Galaxy satellites of the Milky Way

Many of them within the 100 kpc from GC: lower signal than from the GC Low astrophysical background

Dark Matter subhalos in the Milky Way halo

0

0

Lower signal than the GC region No other wavelengths conventional counterpart No conventional astrophyisical background

Cosmological simulation of a Milky Way-like galaxy Aquarius, Springel et al., Nature 2008

0

Galaxy satellites of the Milky Way

Many of them within the 100 kpc from GC: lower signal than from the GC Low astrophysical background

Galactic Centre (GC)

 \bigcirc

- Proximity (~8kpc)
- Possibly brightest source of DM annihilation signals: DM profile: core? cusp?
- High astrophysical
 bck / source confusion

Dark Matter subhalos in the Milky Way halo

Lower signal than the GC region No other wavelengths conventional counterpart No conventional astrophyisical background

Inner Galactic halo

Large statistics

0

Galactic diffuse
 background

Cosmological simulation of a Milky Way-like galaxy Aquarius, Springel et al., Nature 2008

- The first ever conducted VHE gamma-ray survey of the Galactic Center (GC) region.
- > Aim: to provide **unprecedented sensitivity** to DM signals in the GC region.

- The first ever conducted VHE gamma-ray survey of the Galactic Center (GC) region.
- > Aim: to provide **unprecedented sensitivity** to DM signals in the GC region.
- Dataset: 2014-2020 observations of the GC region with the full five-telescopes H.E.S.S. array.
- 2014-2020 exposure map with IGS pointing positions:
 - Exposure up to $b \approx 6^{\circ}$;
 - Total 546 hours of high-quality data;

- The first ever conducted VHE gamma-ray survey of the Galactic Center (GC) region.
- > Aim: to provide **unprecedented sensitivity** to DM signals in the GC region.
- Dataset: 2014-2020 observations of the GC region.
- 2014-2020 exposure map with IGS pointing positions:
 - Exposure up to $b \approx 6^{\circ}$;
 - Total 546 hours of high-quality data;
 - 25 regions of interest (ROI) defined to search for DM: 0.1°-width open rings;
 - Set of exclusion regions to avoid gamma-ray contamination in the ROIs.

- Definition of the ON region: 25 ROI.
- Reflected background method:
 - OFF region:
 - Symmetric to the ON region wrt the pointing position
 Same FoV and acceptance;
 - The excluded regions are cut symmetrically

 Same solid angle size;
 - Cut overlapping areas and areas where OFF is closer to GC than the ON:
 - The DM signal in the ON region is always higher ² than in the OFF region.
- Repeated for all the 25 ROI and over the ~1300 runs.

• 2D binned Poisson likelihood function exploits spatial and spectral DM features: bins in energy (i) and space (j):

 $\mathcal{L}_{i,j}(N_{S,ij}, N_{B,ij}, \beta_{ij} | N_{ON,ij}, N_{OFF,ij}, \alpha_j) = \frac{[\beta_{ij}(N_{S,ij} + N_{B,ij})]^{N_{ON,ij}}}{N_{ON,ij}!} e^{-\beta_{ij}(N_{S,ij} + N_{B,ij})} \frac{[\beta_{ij}(N'_{S,ij} + \alpha_j N_{B,ij})]^{N_{OFF,ij}}}{N_{OFF,ij}!} e^{-\beta_{ij}(N'_{S,ij} + \alpha_j N_{B,ij})} e^{-\beta_{ij}(N'_{S,ij} + \alpha_j N_{B,ij$

- Total likelihood function: $\mathcal{L} = \prod \mathcal{L}_{i,j}$
- $N_{ON,ij}$ and $N_{OFF,ij} \rightarrow$ number of measured events in spatial ON and OFF regions;
- $N_{S,ij} + N_{B,ij} \rightarrow$ expected total number of events in the spatial ON region;
- $N'_{S,ij} + \alpha_j N_{B,ij} \rightarrow$ expected total number of events in the spatial OFF region;
- $\alpha_j = \frac{\Delta \Omega_{ON}}{\Delta \Omega_{OFF}} \rightarrow$ ratio between angular size of ON and OFF regions.

 2D binned Poisson likelihood function exploits spatial and spectral DM features: bins in energy (i) and space (j):

 $\mathcal{L}_{i,j}(N_{S,ij}, N_{B,ij}, \beta_{ij} | N_{ON,ij}, N_{OFF,ij}, \alpha_j) = \frac{[\beta_{ij}(N_{S,ij} + N_{B,ij})]^{N_{ON,ij}}}{N_{ON,ij}!} e^{-\beta_{ij}(N_{S,ij} + N_{B,ij})} \frac{[\beta_{ij}(N'_{S,ij} + \alpha_j N_{B,ij})]^{N_{OFF,ij}}}{N_{OFF,ij}!} e^{-\beta_{ij}(N'_{S,ij} + \alpha_j N_{B,ij})} e^{\frac{-(1 - \beta_{ij})^2}{\sigma_{\beta_{ij}}}} e^{-\beta_{ij}(N_{S,ij} + \alpha_j N_{B,ij})} \frac{[\beta_{ij}(N_{S,ij} + \alpha_j N_{B,ij})]^{N_{OFF,ij}}}{N_{OFF,ij}!} e^{-\beta_{ij}(N_{S,ij} + \alpha_j N_{B,ij})} e^{\frac{-(1 - \beta_{ij})^2}{\sigma_{\beta_{ij}}}} e^{-\beta_{ij}(N_{S,ij} + \alpha_j N_{B,ij})} \frac{[\beta_{ij}(N_{S,ij} + \alpha_j N_{B,ij})]^{N_{OFF,ij}}}{N_{OFF,ij}!} e^{-\beta_{ij}(N_{S,ij} + \alpha_j N_{B,ij})} e^{\frac{-(1 - \beta_{ij})^2}{\sigma_{\beta_{ij}}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}} e^{\frac{-(1 - \beta_{ij})^2}{\sigma_{\beta_{ij}}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}}} e^{\frac{-(1 - \beta_{ij$

- Total likelihood function: $\mathcal{L} = \prod \mathcal{L}_{i,j}$
- The systematic uncertainties can be included via a nuisance parameter;

Refs: Silverwood, et al, JCAP03, 055 (2015); Lefranc, et al. Phys. Rev. D91, 122003 (2015); CTA Dark Matter Programme (2019)

- A value of 1% is used for the determination of the limits: σ_{β} =0.01
- The value of $\boldsymbol{\beta}$ is determined via conditional maximization
 - β is computed for each energy and spatial bins, i.e., $\beta_{i,j}$.

 2D binned Poisson likelihood function exploits spatial and spectral DM features: bins in energy (i) and space (j):

 $\mathcal{L}_{i,j}(N_{S,ij}, N_{B,ij}, \beta_{ij} | N_{ON,ij}, N_{OFF,ij}, \alpha_j) = \frac{[\beta_{ij}(N_{S,ij} + N_{B,ij})]^{N_{ON,ij}}}{N_{ON,ij}!} e^{-\beta_{ij}(N_{S,ij} + N_{B,ij})} \frac{[\beta_{ij}(N'_{S,ij} + \alpha_j N_{B,ij})]^{N_{OFF,ij}}}{N_{OFF,ij}!} e^{-\beta_{ij}(N'_{S,ij} + \alpha_j N_{B,ij})} e^{\frac{-(1 - \beta_{ij})^2}{\sigma_{\beta_{ij}}}} e^{-\beta_{ij}(N_{S,ij} + \alpha_j N_{B,ij})} \frac{[\beta_{ij}(N_{S,ij} + \alpha_j N_{B,ij})]^{N_{OFF,ij}}}{N_{OFF,ij}!} e^{-\beta_{ij}(N_{S,ij} + \alpha_j N_{B,ij})} e^{\frac{-(1 - \beta_{ij})^2}{\sigma_{\beta_{ij}}}} e^{-\beta_{ij}(N_{S,ij} + \alpha_j N_{B,ij})} \frac{[\beta_{ij}(N_{S,ij} + \alpha_j N_{B,ij})]^{N_{OFF,ij}}}{N_{OFF,ij}!} e^{-\beta_{ij}(N_{S,ij} + \alpha_j N_{B,ij})} e^{\frac{-(1 - \beta_{ij})^2}{\sigma_{\beta_{ij}}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}} e^{\frac{-(1 - \beta_{ij})^2}{\sigma_{\beta_{ij}}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}} e^{\frac{-(1 - \beta_{ij})^2}{N_{OFF,ij}}}} e^{\frac{-(1 - \beta_{ij$

- Total likelihood function: $\mathcal{L} = \prod \mathcal{L}_{i,j}$
- In absence of any significant excess in the FoV:
 - → 95% C.L. upper limits on the free parameter <ov> from a log-likelihood ratio test statistics (TS). Ref. Cowan, G., Cranmer, K., Gross, E. *et al. Eur. Phys. J. C* 71, 1554 (2011)
- Computation of expected limits and containment bands:
 - Independent Poisson realizations for the ON and OFF measurements;
 - \rightarrow mean and std deviation derived from the distribution of the obtained $\langle \sigma v \rangle$ values.

Computation of upper limits on $\langle \sigma v \rangle$

- No significant excess in the FoV: \rightarrow 95% C.L. upper limits on < σ v> from the TS;
- H.E.S.S. upper limits;
- Independent Poisson realizations for N_{ON} and N_{OFF} in the computation of the expected limits;
- Containment bands plotted at 1σ and 2σ level;
- Systematic uncertainty included in the limits via a nuisance parameter in the likelihood function.

- H.E.S.S. upper limits.
- Fermi-LAT dSph and GC, HAWC dSph and GC, MAGIC Segue 1, PLANCK CMB, H.E.S.S. GC (2016) and this work.
- \rightarrow Most constraining limits in the TeV-energy range.

- IGS campaign with pointing positions up to 3.2° is very fruitful:
 - Around 546 hours of high-quality data from 2014 to 2020.
- Computation of 95% C.L. expected and observed limits including systematic uncertainty.
- VHE observations of the GC region are unique for the study of the WIMP paradigm.
- With the unprecedented IGS dataset:
 → strongest constraints obtained in the TeV mass range.
- Limits are computed in other channels \rightarrow can probe the thermal relic scale.
- The IGS is one of the legacy of the H.E.S.S. collaboration and it paves the way for CTA.

REF. A. Montanari et al. on behalf of the H.E.S.S. Collaboration, POS(ICRC2021)511

OUTLINE

A. Montanari – DM search with the H.E.S.S. IGS – IRN Terascale @ Bonn – 29th March 2022