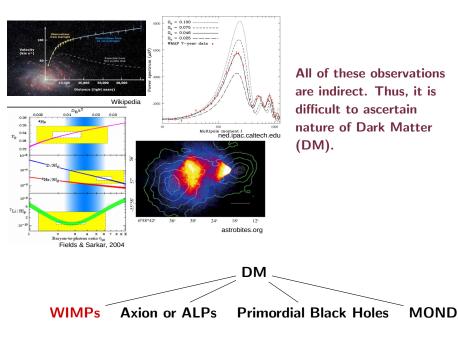
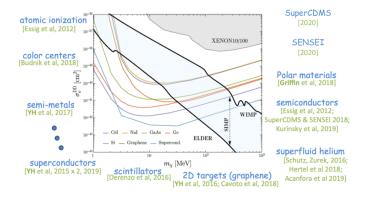
Boosting through the Darkness


collaboration with Debjyoti Bardhan, Supritha Bhowmick, Diptimoy Ghosh & Atanu Guha

presented by Divya Sachdeva

IRN Terascale @ Bonn

< □ > < □ > < □ > < □ > < □ > < □ > = □



Sub-GeV Dark Matter and its interaction with electrons

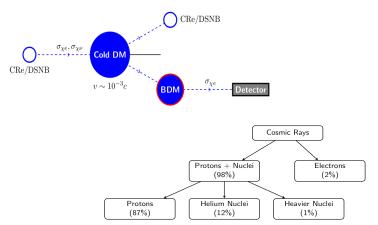
▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Light DM and Direct Detection

Average velocity of DM particles in the solar neighbourhood, $v \sim 10^{-3}$, so that DD experiments lose sensitivity for DM particle below mass of ~ 5 MeV DM-electron crosssection.

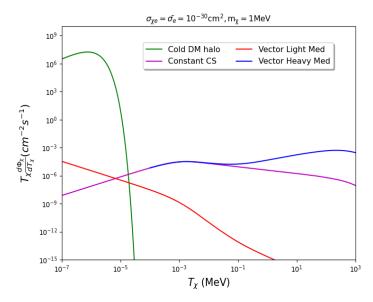
Eric Kuflik's ICHEP 2020 slides

크


<ロト (四) (三) (三) (三)

Boosted Dark Matter and Sub-GeV DM detection

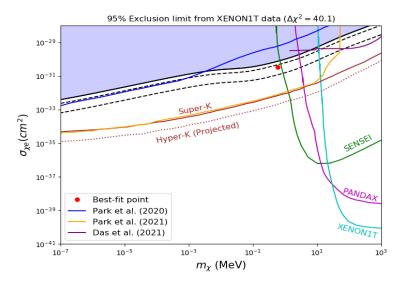
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで


Boosted Dark Matter

DM sub-component upscattered by cosmic-ray

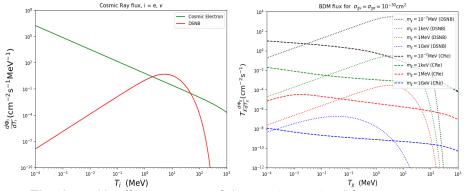
The existence of boosted DM is unavoidable as long as one assumes some DM interactions with the Standard Model (SM) particles, a pre-requisite in any Direct Detection experiment.

Boosted DM Flux



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

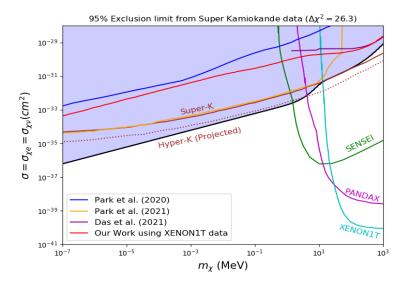
Constant Scattering cross-section


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Limits on $\sigma_{\chi e}$

See Cappiello & Beacom (1906.11283) for Super K and Hyper K, Park et al. (2006.13910, 2101.11262), Das et al. (2104.00027)

Diffused Supernova Neutrino Background



The observable effective spectra of the neutrinos emitted from supernovae, is assumed to be of Fermi-Dirac form and approximately given for each flavour as :

$$F_{\nu}(E_{\nu}) = \frac{E_{\nu}^{tot}}{6} \frac{120}{7\pi^4} \frac{E_{\nu}^2}{T_{\nu}^4} \frac{1}{\exp(\frac{E_{\nu}}{T_{\nu}}) + 1}$$

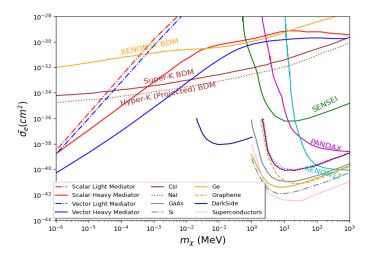
ヘロト ヘヨト ヘヨト ヘ

$\sigma_{\chi \rm e}$ & $\sigma_{\chi \nu}$ Limits

Ghosh, Guha & Sachdeva 2021 (2110.00025)

590

Energy dependence of scattering cross-section


It is important to include energy dependence of σ when comparing this detection technique with other ones, because they rely on different energy regimes.

We assumed DM to be SM singlet and a Dirac Fermion, χ with the following interactions:

$$\begin{array}{lll} \mathcal{L}_{s} &=& g_{\chi} \bar{\chi} \chi \phi + g_{e} \bar{e} e \phi \,, \\ \mathcal{L}_{v} &=& g_{\chi} \bar{\chi} \gamma_{\mu} \chi B^{\mu} + g_{e} \bar{e} \gamma_{\mu} e B^{\mu} \,. \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Limits on scalar and vector interaction case

Bardhan, Bhowmick, Ghosh, Guha & Sachdeva 2022 (progress)

Work in progress

- We consider scalar-pseudoscalar, axial-vector model so that CMB constraints on DM annihilation can be evaded, thanks to their *p* – *wave* suppressed DM annihilation.
- We prove that our new limits and sensitivities can test theoretically-consistent parameter space of $U(1)_{B-L}$ models.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conclusion

- There exist a DM sub-component that possess a larger Kinetic Energy than DM in the viralised halo.
- This component is unavoidable as long as DM interact with Cosmic Ray components like electron, proton, neutrinos etc.
- Such component provide an alternate avenue to probe light DM with existing Direct Detection experiments and with neutrino detectors.
- ▶ In this context, we focussed on DM interactions with e⁻.
- We obtained limits on various interactions taking into account the energy dependence of the DM scattering cross-sections for different detectors such as Super-K as well as XENON1T.
- We also derived new constraints on combination of σ_{χe} and σ_{χν} if DM interacts with ν's as well as e⁻'s (like Majorons).